Rozwiąż względem x
x=\frac{14}{17}\approx 0,823529412
Wykres
Udostępnij
Skopiowano do schowka
x-4+3\left(2x+8\right)=48+24x-42
Pomnóż obie strony równania przez 6 (najmniejsza wspólna wielokrotność wartości 6,2).
x-4+6x+24=48+24x-42
Użyj właściwości rozdzielności, aby pomnożyć 3 przez 2x+8.
7x-4+24=48+24x-42
Połącz x i 6x, aby uzyskać 7x.
7x+20=48+24x-42
Dodaj -4 i 24, aby uzyskać 20.
7x+20=6+24x
Odejmij 42 od 48, aby uzyskać 6.
7x+20-24x=6
Odejmij 24x od obu stron.
-17x+20=6
Połącz 7x i -24x, aby uzyskać -17x.
-17x=6-20
Odejmij 20 od obu stron.
-17x=-14
Odejmij 20 od 6, aby uzyskać -14.
x=\frac{-14}{-17}
Podziel obie strony przez -17.
x=\frac{14}{17}
Ułamek \frac{-14}{-17} można uprościć do postaci \frac{14}{17} przez usunięcie znaku minus z licznika i mianownika.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}