Oblicz
\frac{19000\sqrt{1827641}}{1827641}\approx 14,054265543
Udostępnij
Skopiowano do schowka
\frac{380}{\sqrt{\left(\frac{5,36}{0,2}\right)^{2}+3,58^{2}}}
Dodaj 2,1 i 3,26, aby uzyskać 5,36.
\frac{380}{\sqrt{\left(\frac{536}{20}\right)^{2}+3,58^{2}}}
Rozwiń liczbę \frac{5,36}{0,2}, mnożąc licznik i mianownik przez 100.
\frac{380}{\sqrt{\left(\frac{134}{5}\right)^{2}+3,58^{2}}}
Zredukuj ułamek \frac{536}{20} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
\frac{380}{\sqrt{\frac{17956}{25}+3,58^{2}}}
Podnieś \frac{134}{5} do potęgi 2, aby uzyskać \frac{17956}{25}.
\frac{380}{\sqrt{\frac{17956}{25}+12,8164}}
Podnieś 3,58 do potęgi 2, aby uzyskać 12,8164.
\frac{380}{\sqrt{\frac{1827641}{2500}}}
Dodaj \frac{17956}{25} i 12,8164, aby uzyskać \frac{1827641}{2500}.
\frac{380}{\frac{\sqrt{1827641}}{\sqrt{2500}}}
Ponownie wpisz pierwiastek kwadratowy działu \sqrt{\frac{1827641}{2500}} jako podział pierwiastków korzeniowych \frac{\sqrt{1827641}}{\sqrt{2500}}.
\frac{380}{\frac{\sqrt{1827641}}{50}}
Oblicz pierwiastek kwadratowy wartości 2500, aby uzyskać 50.
\frac{380\times 50}{\sqrt{1827641}}
Podziel 380 przez \frac{\sqrt{1827641}}{50}, mnożąc 380 przez odwrotność \frac{\sqrt{1827641}}{50}.
\frac{380\times 50\sqrt{1827641}}{\left(\sqrt{1827641}\right)^{2}}
Umożliwia racjonalizację mianownika \frac{380\times 50}{\sqrt{1827641}} przez mnożenie licznika i mianownika przez \sqrt{1827641}.
\frac{380\times 50\sqrt{1827641}}{1827641}
Kwadrat liczby \sqrt{1827641} to 1827641.
\frac{19000\sqrt{1827641}}{1827641}
Pomnóż 380 przez 50, aby uzyskać 19000.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}