Oblicz
\frac{3y^{2}+3y-80}{2\left(y-3\right)\left(y+8\right)y^{2}}
Rozwiń
\frac{3y^{2}+3y-80}{2\left(y-3\right)\left(y+8\right)y^{2}}
Wykres
Udostępnij
Skopiowano do schowka
\frac{3y\left(y-3\right)}{6\left(y-3\right)\left(y+8\right)y^{2}}+\frac{\left(y-5\right)\times 6\left(y+8\right)}{6\left(y-3\right)\left(y+8\right)y^{2}}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości 6y\left(y+8\right) i y^{2}\left(y-3\right) to 6\left(y-3\right)\left(y+8\right)y^{2}. Pomnóż \frac{3}{6y\left(y+8\right)} przez \frac{y\left(y-3\right)}{y\left(y-3\right)}. Pomnóż \frac{y-5}{y^{2}\left(y-3\right)} przez \frac{6\left(y+8\right)}{6\left(y+8\right)}.
\frac{3y\left(y-3\right)+\left(y-5\right)\times 6\left(y+8\right)}{6\left(y-3\right)\left(y+8\right)y^{2}}
Ponieważ \frac{3y\left(y-3\right)}{6\left(y-3\right)\left(y+8\right)y^{2}} i \frac{\left(y-5\right)\times 6\left(y+8\right)}{6\left(y-3\right)\left(y+8\right)y^{2}} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{3y^{2}-9y+6y^{2}+48y-30y-240}{6\left(y-3\right)\left(y+8\right)y^{2}}
Wykonaj operacje mnożenia w równaniu 3y\left(y-3\right)+\left(y-5\right)\times 6\left(y+8\right).
\frac{9y^{2}+9y-240}{6\left(y-3\right)\left(y+8\right)y^{2}}
Połącz podobne czynniki w równaniu 3y^{2}-9y+6y^{2}+48y-30y-240.
\frac{9y^{2}+9y-240}{6y^{4}+30y^{3}-144y^{2}}
Rozwiń 6\left(y-3\right)\left(y+8\right)y^{2}.
\frac{3y\left(y-3\right)}{6\left(y-3\right)\left(y+8\right)y^{2}}+\frac{\left(y-5\right)\times 6\left(y+8\right)}{6\left(y-3\right)\left(y+8\right)y^{2}}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości 6y\left(y+8\right) i y^{2}\left(y-3\right) to 6\left(y-3\right)\left(y+8\right)y^{2}. Pomnóż \frac{3}{6y\left(y+8\right)} przez \frac{y\left(y-3\right)}{y\left(y-3\right)}. Pomnóż \frac{y-5}{y^{2}\left(y-3\right)} przez \frac{6\left(y+8\right)}{6\left(y+8\right)}.
\frac{3y\left(y-3\right)+\left(y-5\right)\times 6\left(y+8\right)}{6\left(y-3\right)\left(y+8\right)y^{2}}
Ponieważ \frac{3y\left(y-3\right)}{6\left(y-3\right)\left(y+8\right)y^{2}} i \frac{\left(y-5\right)\times 6\left(y+8\right)}{6\left(y-3\right)\left(y+8\right)y^{2}} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{3y^{2}-9y+6y^{2}+48y-30y-240}{6\left(y-3\right)\left(y+8\right)y^{2}}
Wykonaj operacje mnożenia w równaniu 3y\left(y-3\right)+\left(y-5\right)\times 6\left(y+8\right).
\frac{9y^{2}+9y-240}{6\left(y-3\right)\left(y+8\right)y^{2}}
Połącz podobne czynniki w równaniu 3y^{2}-9y+6y^{2}+48y-30y-240.
\frac{9y^{2}+9y-240}{6y^{4}+30y^{3}-144y^{2}}
Rozwiń 6\left(y-3\right)\left(y+8\right)y^{2}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}