Przejdź do głównej zawartości
Oblicz
Tick mark Image
Część rzeczywista
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3-i\right)\left(-3+i\right)}
Pomnóż licznik i mianownik przez sprzężenie zespolone mianownika (-3+i).
\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3\right)^{2}-i^{2}}
Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11+17i\right)\left(-3+i\right)}{10}
Z definicji i^{2} wynosi -1. Oblicz mianownik.
\frac{11\left(-3\right)+11i+17i\left(-3\right)+17i^{2}}{10}
Pomnóż liczby zespolone 11+17i i -3+i tak, jak mnoży się dwumiany.
\frac{11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right)}{10}
Z definicji i^{2} wynosi -1.
\frac{-33+11i-51i-17}{10}
Wykonaj operacje mnożenia w równaniu 11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right).
\frac{-33-17+\left(11-51\right)i}{10}
Połącz części rzeczywistą i urojoną w: -33+11i-51i-17.
\frac{-50-40i}{10}
Wykonaj operacje dodawania w równaniu -33-17+\left(11-51\right)i.
-5-4i
Podziel -50-40i przez 10, aby uzyskać -5-4i.
Re(\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3-i\right)\left(-3+i\right)})
Pomnóż licznik i mianownik wartości \frac{11+17i}{-3-i} przez sprzężenie zespolone mianownika -3+i.
Re(\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3\right)^{2}-i^{2}})
Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(11+17i\right)\left(-3+i\right)}{10})
Z definicji i^{2} wynosi -1. Oblicz mianownik.
Re(\frac{11\left(-3\right)+11i+17i\left(-3\right)+17i^{2}}{10})
Pomnóż liczby zespolone 11+17i i -3+i tak, jak mnoży się dwumiany.
Re(\frac{11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right)}{10})
Z definicji i^{2} wynosi -1.
Re(\frac{-33+11i-51i-17}{10})
Wykonaj operacje mnożenia w równaniu 11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right).
Re(\frac{-33-17+\left(11-51\right)i}{10})
Połącz części rzeczywistą i urojoną w: -33+11i-51i-17.
Re(\frac{-50-40i}{10})
Wykonaj operacje dodawania w równaniu -33-17+\left(11-51\right)i.
Re(-5-4i)
Podziel -50-40i przez 10, aby uzyskać -5-4i.
-5
Część rzeczywista liczby -5-4i to -5.