Oblicz
\frac{5-3x}{\left(2-x\right)^{2}}
Rozwiń
-\frac{3x-5}{\left(x-2\right)^{2}}
Wykres
Udostępnij
Skopiowano do schowka
\frac{1}{\left(x-2\right)\left(-x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Rozłóż 4x-x^{2}-4 na czynniki. Rozłóż x^{2}-4 na czynniki.
\frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}-\frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(x-2\right)\left(-x+2\right) i \left(x-2\right)\left(x+2\right) to \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnóż \frac{1}{\left(x-2\right)\left(-x+2\right)} przez \frac{x+2}{x+2}. Pomnóż \frac{4}{\left(x-2\right)\left(x+2\right)} przez \frac{-x+2}{-x+2}.
\frac{x+2-4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Ponieważ \frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{x+2+4x-8}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Wykonaj operacje mnożenia w równaniu x+2-4\left(-x+2\right).
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Połącz podobne czynniki w równaniu x+2+4x-8.
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(x-2\right)\left(x+2\right)\left(-x+2\right) i 2-x to \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnóż \frac{x}{2-x} przez \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{5x-6+x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Ponieważ \frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{5x-6+x^{3}+2x^{2}-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Wykonaj operacje mnożenia w równaniu 5x-6+x\left(x-2\right)\left(x+2\right).
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Połącz podobne czynniki w równaniu 5x-6+x^{3}+2x^{2}-2x^{2}-4x.
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(x-2\right)\left(x+2\right)\left(-x+2\right) i x+2 to \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnóż \frac{x+1}{x+2} przez \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(-x+2\right)}.
\frac{x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Ponieważ \frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Wykonaj operacje mnożenia w równaniu x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right).
\frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Połącz podobne czynniki w równaniu x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4.
\frac{\left(3x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}.
\frac{3x-5}{\left(x-2\right)\left(-x+2\right)}
Skróć wartość x+2 w liczniku i mianowniku.
\frac{3x-5}{-x^{2}+4x-4}
Rozwiń \left(x-2\right)\left(-x+2\right).
\frac{1}{\left(x-2\right)\left(-x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Rozłóż 4x-x^{2}-4 na czynniki. Rozłóż x^{2}-4 na czynniki.
\frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}-\frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(x-2\right)\left(-x+2\right) i \left(x-2\right)\left(x+2\right) to \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnóż \frac{1}{\left(x-2\right)\left(-x+2\right)} przez \frac{x+2}{x+2}. Pomnóż \frac{4}{\left(x-2\right)\left(x+2\right)} przez \frac{-x+2}{-x+2}.
\frac{x+2-4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Ponieważ \frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{x+2+4x-8}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Wykonaj operacje mnożenia w równaniu x+2-4\left(-x+2\right).
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Połącz podobne czynniki w równaniu x+2+4x-8.
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(x-2\right)\left(x+2\right)\left(-x+2\right) i 2-x to \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnóż \frac{x}{2-x} przez \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{5x-6+x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Ponieważ \frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{5x-6+x^{3}+2x^{2}-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Wykonaj operacje mnożenia w równaniu 5x-6+x\left(x-2\right)\left(x+2\right).
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Połącz podobne czynniki w równaniu 5x-6+x^{3}+2x^{2}-2x^{2}-4x.
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(x-2\right)\left(x+2\right)\left(-x+2\right) i x+2 to \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnóż \frac{x+1}{x+2} przez \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(-x+2\right)}.
\frac{x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Ponieważ \frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Wykonaj operacje mnożenia w równaniu x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right).
\frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Połącz podobne czynniki w równaniu x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4.
\frac{\left(3x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}.
\frac{3x-5}{\left(x-2\right)\left(-x+2\right)}
Skróć wartość x+2 w liczniku i mianowniku.
\frac{3x-5}{-x^{2}+4x-4}
Rozwiń \left(x-2\right)\left(-x+2\right).
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}