Przejdź do głównej zawartości
Oblicz
Tick mark Image
Rozwiń
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}, aby rozwinąć równanie \left(a-2b\right)^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, aby rozwinąć równanie \left(a-2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p+q\right)^{2}=p^{2}+2pq+q^{2}, aby rozwinąć równanie \left(a+2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć a^{2}-4a+4 przez a^{2}+4a+4 i połączyć podobne czynniki.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz -8a^{2} i 4a^{2}, aby uzyskać -4a^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, aby rozwinąć równanie \left(2-a^{2}\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Aby znaleźć wartość przeciwną do 4-4a^{2}+a^{4}, znajdź wartość przeciwną każdego czynnika.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Odejmij 4 od 16, aby uzyskać 12.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz -4a^{2} i 4a^{2}, aby uzyskać 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz a^{4} i -a^{4}, aby uzyskać 0.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Pomnóż \frac{1}{36} przez 12, aby uzyskać \frac{1}{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć \frac{1}{3} przez a^{3}-6a^{2}b+12ab^{2}-8b^{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć ab przez \frac{11}{3}b-a.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Aby znaleźć wartość przeciwną do \frac{11}{3}ab^{2}-ba^{2}, znajdź wartość przeciwną każdego czynnika.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz 4ab^{2} i -\frac{11}{3}ab^{2}, aby uzyskać \frac{1}{3}ab^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz -2a^{2}b i ba^{2}, aby uzyskać -a^{2}b.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć \frac{1}{3}a-b przez b^{2}+a^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Aby znaleźć wartość przeciwną do \frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}, znajdź wartość przeciwną każdego czynnika.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Połącz \frac{1}{3}ab^{2} i -\frac{1}{3}ab^{2}, aby uzyskać 0.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Połącz \frac{1}{3}a^{3} i -\frac{1}{3}a^{3}, aby uzyskać 0.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Połącz -\frac{8}{3}b^{3} i b^{3}, aby uzyskać -\frac{5}{3}b^{3}.
-\frac{5}{3}b^{3}
Połącz -a^{2}b i ba^{2}, aby uzyskać 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}, aby rozwinąć równanie \left(a-2b\right)^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, aby rozwinąć równanie \left(a-2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p+q\right)^{2}=p^{2}+2pq+q^{2}, aby rozwinąć równanie \left(a+2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć a^{2}-4a+4 przez a^{2}+4a+4 i połączyć podobne czynniki.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz -8a^{2} i 4a^{2}, aby uzyskać -4a^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj dwumianu Newtona \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, aby rozwinąć równanie \left(2-a^{2}\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Aby znaleźć wartość przeciwną do 4-4a^{2}+a^{4}, znajdź wartość przeciwną każdego czynnika.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Odejmij 4 od 16, aby uzyskać 12.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz -4a^{2} i 4a^{2}, aby uzyskać 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz a^{4} i -a^{4}, aby uzyskać 0.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Pomnóż \frac{1}{36} przez 12, aby uzyskać \frac{1}{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć \frac{1}{3} przez a^{3}-6a^{2}b+12ab^{2}-8b^{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć ab przez \frac{11}{3}b-a.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Aby znaleźć wartość przeciwną do \frac{11}{3}ab^{2}-ba^{2}, znajdź wartość przeciwną każdego czynnika.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz 4ab^{2} i -\frac{11}{3}ab^{2}, aby uzyskać \frac{1}{3}ab^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Połącz -2a^{2}b i ba^{2}, aby uzyskać -a^{2}b.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Użyj właściwości rozdzielności, aby pomnożyć \frac{1}{3}a-b przez b^{2}+a^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Aby znaleźć wartość przeciwną do \frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}, znajdź wartość przeciwną każdego czynnika.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Połącz \frac{1}{3}ab^{2} i -\frac{1}{3}ab^{2}, aby uzyskać 0.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Połącz \frac{1}{3}a^{3} i -\frac{1}{3}a^{3}, aby uzyskać 0.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Połącz -\frac{8}{3}b^{3} i b^{3}, aby uzyskać -\frac{5}{3}b^{3}.
-\frac{5}{3}b^{3}
Połącz -a^{2}b i ba^{2}, aby uzyskać 0.