Przejdź do głównej zawartości
Oblicz
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{1}{2\sqrt{502}-\sqrt{200}}
Rozłóż 2008=2^{2}\times 502 na czynniki. Ponownie wpisz pierwiastek kwadratowy produktu \sqrt{2^{2}\times 502} jako iloczyn kwadratowych korzeni \sqrt{2^{2}}\sqrt{502}. Oblicz pierwiastek kwadratowy wartości 2^{2}.
\frac{1}{2\sqrt{502}-10\sqrt{2}}
Rozłóż 200=10^{2}\times 2 na czynniki. Ponownie wpisz pierwiastek kwadratowy produktu \sqrt{10^{2}\times 2} jako iloczyn kwadratowych korzeni \sqrt{10^{2}}\sqrt{2}. Oblicz pierwiastek kwadratowy wartości 10^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right)}
Umożliwia racjonalizację mianownika \frac{1}{2\sqrt{502}-10\sqrt{2}} przez mnożenie licznika i mianownika przez 2\sqrt{502}+10\sqrt{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Rozważ \left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2^{2}\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Rozwiń \left(2\sqrt{502}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{4\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Podnieś 2 do potęgi 2, aby uzyskać 4.
\frac{2\sqrt{502}+10\sqrt{2}}{4\times 502-\left(-10\sqrt{2}\right)^{2}}
Kwadrat liczby \sqrt{502} to 502.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\sqrt{2}\right)^{2}}
Pomnóż 4 przez 502, aby uzyskać 2008.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\right)^{2}\left(\sqrt{2}\right)^{2}}
Rozwiń \left(-10\sqrt{2}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\left(\sqrt{2}\right)^{2}}
Podnieś -10 do potęgi 2, aby uzyskać 100.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\times 2}
Kwadrat liczby \sqrt{2} to 2.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-200}
Pomnóż 100 przez 2, aby uzyskać 200.
\frac{2\sqrt{502}+10\sqrt{2}}{1808}
Odejmij 200 od 2008, aby uzyskać 1808.