ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
z ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

z^{2}-6z+34=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
z=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 34}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -6 ਨੂੰ b ਲਈ, ਅਤੇ 34 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
z=\frac{-\left(-6\right)±\sqrt{36-4\times 34}}{2}
-6 ਦਾ ਵਰਗ ਕਰੋ।
z=\frac{-\left(-6\right)±\sqrt{36-136}}{2}
-4 ਨੂੰ 34 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{-\left(-6\right)±\sqrt{-100}}{2}
36 ਨੂੰ -136 ਵਿੱਚ ਜੋੜੋ।
z=\frac{-\left(-6\right)±10i}{2}
-100 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z=\frac{6±10i}{2}
-6 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 6 ਹੈ।
z=\frac{6+10i}{2}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{6±10i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 6 ਨੂੰ 10i ਵਿੱਚ ਜੋੜੋ।
z=3+5i
6+10i ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z=\frac{6-10i}{2}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{6±10i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 6 ਵਿੱਚੋਂ 10i ਨੂੰ ਘਟਾਓ।
z=3-5i
6-10i ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z=3+5i z=3-5i
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
z^{2}-6z+34=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
z^{2}-6z+34-34=-34
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 34 ਨੂੰ ਘਟਾਓ।
z^{2}-6z=-34
34 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
z^{2}-6z+\left(-3\right)^{2}=-34+\left(-3\right)^{2}
-6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -3 ਨਿਕਲੇ। ਫੇਰ, -3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
z^{2}-6z+9=-34+9
-3 ਦਾ ਵਰਗ ਕਰੋ।
z^{2}-6z+9=-25
-34 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(z-3\right)^{2}=-25
ਫੈਕਟਰ z^{2}-6z+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(z-3\right)^{2}}=\sqrt{-25}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z-3=5i z-3=-5i
ਸਪਸ਼ਟ ਕਰੋ।
z=3+5i z=3-5i
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਨੂੰ ਜੋੜੋ।