ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
z ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
z ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

z^{2}+16z+64=7
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
z^{2}+16z+64-7=7-7
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7 ਨੂੰ ਘਟਾਓ।
z^{2}+16z+64-7=0
7 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
z^{2}+16z+57=0
64 ਵਿੱਚੋਂ 7 ਨੂੰ ਘਟਾਓ।
z=\frac{-16±\sqrt{16^{2}-4\times 57}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 16 ਨੂੰ b ਲਈ, ਅਤੇ 57 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
z=\frac{-16±\sqrt{256-4\times 57}}{2}
16 ਦਾ ਵਰਗ ਕਰੋ।
z=\frac{-16±\sqrt{256-228}}{2}
-4 ਨੂੰ 57 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{-16±\sqrt{28}}{2}
256 ਨੂੰ -228 ਵਿੱਚ ਜੋੜੋ।
z=\frac{-16±2\sqrt{7}}{2}
28 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z=\frac{2\sqrt{7}-16}{2}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{-16±2\sqrt{7}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -16 ਨੂੰ 2\sqrt{7} ਵਿੱਚ ਜੋੜੋ।
z=\sqrt{7}-8
-16+2\sqrt{7} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z=\frac{-2\sqrt{7}-16}{2}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{-16±2\sqrt{7}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -16 ਵਿੱਚੋਂ 2\sqrt{7} ਨੂੰ ਘਟਾਓ।
z=-\sqrt{7}-8
-16-2\sqrt{7} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z=\sqrt{7}-8 z=-\sqrt{7}-8
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(z+8\right)^{2}=7
ਫੈਕਟਰ z^{2}+16z+64। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(z+8\right)^{2}}=\sqrt{7}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z+8=\sqrt{7} z+8=-\sqrt{7}
ਸਪਸ਼ਟ ਕਰੋ।
z=\sqrt{7}-8 z=-\sqrt{7}-8
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾਓ।
z^{2}+16z+64=7
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
z^{2}+16z+64-7=7-7
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7 ਨੂੰ ਘਟਾਓ।
z^{2}+16z+64-7=0
7 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
z^{2}+16z+57=0
64 ਵਿੱਚੋਂ 7 ਨੂੰ ਘਟਾਓ।
z=\frac{-16±\sqrt{16^{2}-4\times 57}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 16 ਨੂੰ b ਲਈ, ਅਤੇ 57 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
z=\frac{-16±\sqrt{256-4\times 57}}{2}
16 ਦਾ ਵਰਗ ਕਰੋ।
z=\frac{-16±\sqrt{256-228}}{2}
-4 ਨੂੰ 57 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{-16±\sqrt{28}}{2}
256 ਨੂੰ -228 ਵਿੱਚ ਜੋੜੋ।
z=\frac{-16±2\sqrt{7}}{2}
28 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z=\frac{2\sqrt{7}-16}{2}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{-16±2\sqrt{7}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -16 ਨੂੰ 2\sqrt{7} ਵਿੱਚ ਜੋੜੋ।
z=\sqrt{7}-8
-16+2\sqrt{7} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z=\frac{-2\sqrt{7}-16}{2}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{-16±2\sqrt{7}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -16 ਵਿੱਚੋਂ 2\sqrt{7} ਨੂੰ ਘਟਾਓ।
z=-\sqrt{7}-8
-16-2\sqrt{7} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z=\sqrt{7}-8 z=-\sqrt{7}-8
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(z+8\right)^{2}=7
ਫੈਕਟਰ z^{2}+16z+64। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(z+8\right)^{2}}=\sqrt{7}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z+8=\sqrt{7} z+8=-\sqrt{7}
ਸਪਸ਼ਟ ਕਰੋ।
z=\sqrt{7}-8 z=-\sqrt{7}-8
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾਓ।