x ਲਈ ਹਲ ਕਰੋ
x=\frac{y^{2}+6y+1}{8}
y ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
y=2\sqrt{2\left(x+1\right)}-3
y=-2\sqrt{2\left(x+1\right)}-3
y ਲਈ ਹਲ ਕਰੋ
y=2\sqrt{2\left(x+1\right)}-3
y=-2\sqrt{2\left(x+1\right)}-3\text{, }x\geq -1
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-8x+6y+1=-y^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ y^{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-8x+1=-y^{2}-6y
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6y ਨੂੰ ਘਟਾ ਦਿਓ।
-8x=-y^{2}-6y-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-8x}{-8}=\frac{-y^{2}-6y-1}{-8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{-y^{2}-6y-1}{-8}
-8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{y^{2}}{8}+\frac{3y}{4}+\frac{1}{8}
-y^{2}-6y-1 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}