ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

y^{2}-18y=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 18y ਨੂੰ ਘਟਾ ਦਿਓ।
y\left(y-18\right)=0
y ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
y=0 y=18
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, y=0 ਅਤੇ y-18=0 ਨੂੰ ਹੱਲ ਕਰੋ।
y^{2}-18y=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 18y ਨੂੰ ਘਟਾ ਦਿਓ।
y=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -18 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
y=\frac{-\left(-18\right)±18}{2}
\left(-18\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y=\frac{18±18}{2}
-18 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 18 ਹੈ।
y=\frac{36}{2}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{18±18}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 18 ਨੂੰ 18 ਵਿੱਚ ਜੋੜੋ।
y=18
36 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{0}{2}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{18±18}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 18 ਵਿੱਚੋਂ 18 ਨੂੰ ਘਟਾਓ।
y=0
0 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=18 y=0
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
y^{2}-18y=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 18y ਨੂੰ ਘਟਾ ਦਿਓ।
y^{2}-18y+\left(-9\right)^{2}=\left(-9\right)^{2}
-18, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -9 ਨਿਕਲੇ। ਫੇਰ, -9 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
y^{2}-18y+81=81
-9 ਦਾ ਵਰਗ ਕਰੋ।
\left(y-9\right)^{2}=81
ਫੈਕਟਰ y^{2}-18y+81। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(y-9\right)^{2}}=\sqrt{81}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y-9=9 y-9=-9
ਸਪਸ਼ਟ ਕਰੋ।
y=18 y=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9 ਨੂੰ ਜੋੜੋ।