c ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}c=\frac{\left(\frac{y}{e}\right)^{2}}{o}\text{, }&y\geq 0\text{ and }o\neq 0\\c\in \mathrm{R}\text{, }&y=0\text{ and }o=0\end{matrix}\right.
o ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}o=\frac{\left(\frac{y}{e}\right)^{2}}{c}\text{, }&y\geq 0\text{ and }c\neq 0\\o\in \mathrm{R}\text{, }&y=0\text{ and }c=0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
e\sqrt{co}=y
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{e\sqrt{oc}}{e}=\frac{y}{e}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ e ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
\sqrt{oc}=\frac{y}{e}
e ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ e ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
oc=\frac{y^{2}}{e^{2}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
\frac{oc}{o}=\frac{y^{2}}{e^{2}o}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ o ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
c=\frac{y^{2}}{e^{2}o}
o ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ o ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
e\sqrt{co}=y
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{e\sqrt{co}}{e}=\frac{y}{e}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ e ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
\sqrt{co}=\frac{y}{e}
e ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ e ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
co=\frac{y^{2}}{e^{2}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
\frac{co}{c}=\frac{y^{2}}{e^{2}c}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ c ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
o=\frac{y^{2}}{e^{2}c}
c ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ c ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}