x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}\\x=\frac{e^{\frac{2\pi i}{3}}\sqrt[6]{y}}{e^{\frac{5\pi i}{3}}\sqrt[6]{y}+1}\text{; }x=\frac{e^{\frac{\pi i}{3}}\sqrt[6]{y}}{e^{\frac{4\pi i}{3}}\sqrt[6]{y}+1}\text{; }x=-\frac{\sqrt[6]{y}}{\sqrt[6]{y}+1}\text{; }x=\frac{e^{\frac{4\pi i}{3}}\sqrt[6]{y}}{e^{\frac{\pi i}{3}}\sqrt[6]{y}+1}\text{; }x=\frac{e^{\frac{5\pi i}{3}}\sqrt[6]{y}}{e^{\frac{2\pi i}{3}}\sqrt[6]{y}+1}\text{, }&\text{unconditionally}\\x=-\frac{\sqrt[6]{y}}{\sqrt[6]{y}-1}\text{, }&y\neq 1\end{matrix}\right.
x ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}x=-\frac{\sqrt[6]{y}}{\sqrt[6]{y}+1}\text{, }&y\geq 0\\x=\frac{\sqrt[6]{y}}{-\sqrt[6]{y}+1}\text{, }&y\geq 0\text{ and }y\neq 1\end{matrix}\right.
y ਲਈ ਹਲ ਕਰੋ
y=\left(\frac{x}{x+1}\right)^{6}
x\neq -1
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}