x ਲਈ ਹਲ ਕਰੋ
x=\frac{y^{2}-262154}{30}
y\geq 0
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{y^{2}-262154}{30}
arg(y)<\pi \text{ or }y=0
y ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
y=\sqrt{30x+262154}
y ਲਈ ਹਲ ਕਰੋ
y=\sqrt{30x+262154}
x\geq -\frac{131077}{15}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
y=\sqrt{\frac{200+600x}{20}+262144}
8 ਨੂੰ 6 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 262144 ਪ੍ਰਾਪਤ ਕਰੋ।
y=\sqrt{10+30x+262144}
200+600x ਦੇ ਹਰ ਅੰਕ ਨੂੰ 20 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 10+30x ਨਿਕਲੇ।
y=\sqrt{262154+30x}
262154 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 262144 ਨੂੰ ਜੋੜੋ।
\sqrt{262154+30x}=y
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
30x+262154=y^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
30x+262154-262154=y^{2}-262154
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 262154 ਨੂੰ ਘਟਾਓ।
30x=y^{2}-262154
262154 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{30x}{30}=\frac{y^{2}-262154}{30}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 30 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{y^{2}-262154}{30}
30 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 30 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{y^{2}}{30}-\frac{131077}{15}
y^{2}-262154 ਨੂੰ 30 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}