x ਲਈ ਹਲ ਕਰੋ
x=-2y-9
y ਲਈ ਹਲ ਕਰੋ
y=\frac{-x-9}{2}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
y+1=-\frac{1}{2}x-\frac{7}{2}
-\frac{1}{2} ਨੂੰ x+7 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-\frac{1}{2}x-\frac{7}{2}=y+1
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-\frac{1}{2}x=y+1+\frac{7}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{7}{2} ਜੋੜੋ।
-\frac{1}{2}x=y+\frac{9}{2}
\frac{9}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ \frac{7}{2} ਨੂੰ ਜੋੜੋ।
\frac{-\frac{1}{2}x}{-\frac{1}{2}}=\frac{y+\frac{9}{2}}{-\frac{1}{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x=\frac{y+\frac{9}{2}}{-\frac{1}{2}}
-\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -\frac{1}{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=-2y-9
y+\frac{9}{2} ਨੂੰ -\frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ y+\frac{9}{2}ਨੂੰ -\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y+1=-\frac{1}{2}x-\frac{7}{2}
-\frac{1}{2} ਨੂੰ x+7 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
y=-\frac{1}{2}x-\frac{7}{2}-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
y=-\frac{1}{2}x-\frac{9}{2}
-\frac{9}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{7}{2} ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}