x ਲਈ ਹਲ ਕਰੋ
x=3
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-\sqrt{4-x}=2-x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾਓ।
\left(-\sqrt{4-x}\right)^{2}=\left(2-x\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
\left(-1\right)^{2}\left(\sqrt{4-x}\right)^{2}=\left(2-x\right)^{2}
\left(-\sqrt{4-x}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
1\left(\sqrt{4-x}\right)^{2}=\left(2-x\right)^{2}
-1 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
1\left(4-x\right)=\left(2-x\right)^{2}
\sqrt{4-x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4-x ਪ੍ਰਾਪਤ ਕਰੋ।
4-x=\left(2-x\right)^{2}
1 ਨੂੰ 4-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4-x=4-4x+x^{2}
\left(2-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4-x-4=-4x+x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-x=-4x+x^{2}
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-x+4x=x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x ਜੋੜੋ।
3x=x^{2}
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
3x-x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x\left(3-x\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=3
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ 3-x=0 ਨੂੰ ਹੱਲ ਕਰੋ।
0-\sqrt{4-0}=2
ਸਮੀਕਰਨ x-\sqrt{4-x}=2 ਵਿੱਚ, x ਲਈ 0 ਨੂੰ ਬਦਲ ਦਿਓ।
-2=2
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=0 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਕਿਉਂਕਿ ਨੂੰ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹਨ।
3-\sqrt{4-3}=2
ਸਮੀਕਰਨ x-\sqrt{4-x}=2 ਵਿੱਚ, x ਲਈ 3 ਨੂੰ ਬਦਲ ਦਿਓ।
2=2
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=3 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=3
ਸਮੀਕਰਨ -\sqrt{4-x}=2-x ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}