x ਲਈ ਹਲ ਕਰੋ
x=0
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-\sqrt{x^{2}-2x}=-x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾਓ।
\sqrt{x^{2}-2x}=x
-1 ਨੂੰ ਦੋਨਾਂ ਪਾਸਿਆਂ 'ਤੇ ਰੱਦ ਕਰੋ।
\left(\sqrt{x^{2}-2x}\right)^{2}=x^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-2x=x^{2}
\sqrt{x^{2}-2x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x^{2}-2x ਪ੍ਰਾਪਤ ਕਰੋ।
x^{2}-2x-x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
x=0
ਦੋ ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਜ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ, ਜੇ ਇਹਨਾਂ ਵਿੱਚੋਂ ਘੱਟੋ-ਘੱਟ ਇੱਕ 0 ਹੋਏ। ਕਿਉਂਕਿ -2, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੈ, x ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ 0 ਦੇ ਬਰਾਬਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।
0-\sqrt{0^{2}-2\times 0}=0
ਸਮੀਕਰਨ x-\sqrt{x^{2}-2x}=0 ਵਿੱਚ, x ਲਈ 0 ਨੂੰ ਬਦਲ ਦਿਓ।
0=0
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=0 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=0
ਸਮੀਕਰਨ \sqrt{x^{2}-2x}=x ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}