x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}x=\frac{1}{y+2}\text{, }&y\neq -2\\x\in \mathrm{C}\text{, }&y=2\end{matrix}\right.
x ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}x=\frac{1}{y+2}\text{, }&y\neq -2\\x\in \mathrm{R}\text{, }&y=2\end{matrix}\right.
y ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}\\y=2\text{, }&\text{unconditionally}\\y=-2+\frac{1}{x}\text{, }&x\neq 0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(xy+2x\right)\left(y-2\right)=y-2
x ਨੂੰ y+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
xy^{2}-4x=y-2
xy+2x ਨੂੰ y-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\left(y^{2}-4\right)x=y-2
x ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(y^{2}-4\right)x}{y^{2}-4}=\frac{y-2}{y^{2}-4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ y^{2}-4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{y-2}{y^{2}-4}
y^{2}-4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ y^{2}-4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{1}{y+2}
-2+y ਨੂੰ y^{2}-4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\left(xy+2x\right)\left(y-2\right)=y-2
x ਨੂੰ y+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
xy^{2}-4x=y-2
xy+2x ਨੂੰ y-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\left(y^{2}-4\right)x=y-2
x ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(y^{2}-4\right)x}{y^{2}-4}=\frac{y-2}{y^{2}-4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ y^{2}-4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{y-2}{y^{2}-4}
y^{2}-4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ y^{2}-4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{1}{y+2}
-2+y ਨੂੰ y^{2}-4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}