x ਲਈ ਹਲ ਕਰੋ
x=3
x=5
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x-\frac{6x-15}{x-2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{6x-15}{x-2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
ਕਿਉਂਕਿ \frac{x\left(x-2\right)}{x-2} ਅਤੇ \frac{6x-15}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-8x+15=0
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
a+b=-8 ab=15
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ x^{2}-8x+15 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-15 -3,-5
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 15 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-15=-16 -3-5=-8
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-5 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x-5\right)\left(x-3\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(x+a\right)\left(x+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x=5 x=3
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-5=0 ਅਤੇ x-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x-\frac{6x-15}{x-2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{6x-15}{x-2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
ਕਿਉਂਕਿ \frac{x\left(x-2\right)}{x-2} ਅਤੇ \frac{6x-15}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-8x+15=0
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
a+b=-8 ab=1\times 15=15
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx+15 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-15 -3,-5
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 15 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-15=-16 -3-5=-8
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-5 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-5x\right)+\left(-3x+15\right)
x^{2}-8x+15 ਨੂੰ \left(x^{2}-5x\right)+\left(-3x+15\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-5\right)-3\left(x-5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-5\right)\left(x-3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=5 x=3
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-5=0 ਅਤੇ x-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x-\frac{6x-15}{x-2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{6x-15}{x-2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
ਕਿਉਂਕਿ \frac{x\left(x-2\right)}{x-2} ਅਤੇ \frac{6x-15}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-8x+15=0
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -8 ਨੂੰ b ਲਈ, ਅਤੇ 15 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
-8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
-4 ਨੂੰ 15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
64 ਨੂੰ -60 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-8\right)±2}{2}
4 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{8±2}{2}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
x=\frac{10}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{8±2}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 8 ਨੂੰ 2 ਵਿੱਚ ਜੋੜੋ।
x=5
10 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{6}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{8±2}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 8 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾਓ।
x=3
6 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=5 x=3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x-\frac{6x-15}{x-2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{6x-15}{x-2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
ਕਿਉਂਕਿ \frac{x\left(x-2\right)}{x-2} ਅਤੇ \frac{6x-15}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-8x+15=0
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}-8x=-15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
-8, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -4 ਨਿਕਲੇ। ਫੇਰ, -4 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-8x+16=-15+16
-4 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-8x+16=1
-15 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
\left(x-4\right)^{2}=1
ਫੈਕਟਰ x^{2}-8x+16। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-4=1 x-4=-1
ਸਪਸ਼ਟ ਕਰੋ।
x=5 x=3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}