ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਸਾਂਝਾ ਕਰੋ

2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1+\sqrt{3} ਨੂੰ \frac{-1-\sqrt{5i}}{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1-\sqrt{5i} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਨਿਕਲੇ।
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
-1-\sqrt{5i} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਨਿਕਲੇ।
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
\sqrt{3} ਨੂੰ -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2yx=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{2yx}{2y}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2y ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
2y ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2y ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8y}
\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} ਨੂੰ 2y ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1+\sqrt{3} ਨੂੰ \frac{-1-\sqrt{5i}}{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-1-\sqrt{5i} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਨਿਕਲੇ।
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
-\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
-1-\sqrt{5i} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਨਿਕਲੇ।
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
\sqrt{3} ਨੂੰ -\frac{1}{2}-\frac{1}{2}\sqrt{5i} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2xy=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{2xy}{2x}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
2x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8x}
\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} ਨੂੰ 2x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।