x ਲਈ ਹਲ ਕਰੋ
x=\sqrt{15}\approx 3.872983346
x=-\sqrt{15}\approx -3.872983346
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x-2\right)x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}-2x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x-2 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-2x-3x+6=11+\left(x-2\right)\left(-5\right)
x-2 ਨੂੰ -3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-5x+6=11+\left(x-2\right)\left(-5\right)
-5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
x^{2}-5x+6=11-5x+10
x-2 ਨੂੰ -5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-5x+6=21-5x
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11 ਅਤੇ 10 ਨੂੰ ਜੋੜੋ।
x^{2}-5x+6+5x=21
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5x ਜੋੜੋ।
x^{2}+6=21
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5x ਅਤੇ 5x ਨੂੰ ਮਿਲਾਓ।
x^{2}=21-6
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}=15
15 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 21 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\sqrt{15} x=-\sqrt{15}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\left(x-2\right)x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}-2x+\left(x-2\right)\left(-3\right)=11+\left(x-2\right)\left(-5\right)
x-2 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-2x-3x+6=11+\left(x-2\right)\left(-5\right)
x-2 ਨੂੰ -3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-5x+6=11+\left(x-2\right)\left(-5\right)
-5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
x^{2}-5x+6=11-5x+10
x-2 ਨੂੰ -5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-5x+6=21-5x
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11 ਅਤੇ 10 ਨੂੰ ਜੋੜੋ।
x^{2}-5x+6-21=-5x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 21 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-5x-15=-5x
-15 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 21 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-5x-15+5x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5x ਜੋੜੋ।
x^{2}-15=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5x ਅਤੇ 5x ਨੂੰ ਮਿਲਾਓ।
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -15 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\left(-15\right)}}{2}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{60}}{2}
-4 ਨੂੰ -15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±2\sqrt{15}}{2}
60 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\sqrt{15}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±2\sqrt{15}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\sqrt{15}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±2\sqrt{15}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\sqrt{15} x=-\sqrt{15}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}