x ਲਈ ਹਲ ਕਰੋ
x = \frac{\sqrt{1501} - 1}{10} \approx 3.774274126
x=\frac{-\sqrt{1501}-1}{10}\approx -3.974274126
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x+2xx=0.6x+30
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x+2x^{2}=0.6x+30
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x+2x^{2}-0.6x=30
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 0.6x ਨੂੰ ਘਟਾ ਦਿਓ।
0.4x+2x^{2}=30
0.4x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -0.6x ਨੂੰ ਮਿਲਾਓ।
0.4x+2x^{2}-30=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 30 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}+0.4x-30=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-0.4±\sqrt{0.4^{2}-4\times 2\left(-30\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, 0.4 ਨੂੰ b ਲਈ, ਅਤੇ -30 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-0.4±\sqrt{0.16-4\times 2\left(-30\right)}}{2\times 2}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ 0.4 ਦਾ ਵਰਗ ਕੱਢੋ।
x=\frac{-0.4±\sqrt{0.16-8\left(-30\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-0.4±\sqrt{0.16+240}}{2\times 2}
-8 ਨੂੰ -30 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-0.4±\sqrt{240.16}}{2\times 2}
0.16 ਨੂੰ 240 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{2\times 2}
240.16 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{1501}-2}{4\times 5}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -0.4 ਨੂੰ \frac{2\sqrt{1501}}{5} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{1501}-1}{10}
\frac{-2+2\sqrt{1501}}{5} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{1501}-2}{4\times 5}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -0.4 ਵਿੱਚੋਂ \frac{2\sqrt{1501}}{5} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{1501}-1}{10}
\frac{-2-2\sqrt{1501}}{5} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{1501}-1}{10} x=\frac{-\sqrt{1501}-1}{10}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x+2xx=0.6x+30
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x+2x^{2}=0.6x+30
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x+2x^{2}-0.6x=30
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 0.6x ਨੂੰ ਘਟਾ ਦਿਓ।
0.4x+2x^{2}=30
0.4x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -0.6x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+0.4x=30
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}+0.4x}{2}=\frac{30}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{0.4}{2}x=\frac{30}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+0.2x=\frac{30}{2}
0.4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+0.2x=15
30 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+0.2x+0.1^{2}=15+0.1^{2}
0.2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 0.1 ਨਿਕਲੇ। ਫੇਰ, 0.1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+0.2x+0.01=15+0.01
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ 0.1 ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+0.2x+0.01=15.01
15 ਨੂੰ 0.01 ਵਿੱਚ ਜੋੜੋ।
\left(x+0.1\right)^{2}=15.01
ਫੈਕਟਰ x^{2}+0.2x+0.01। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+0.1\right)^{2}}=\sqrt{15.01}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+0.1=\frac{\sqrt{1501}}{10} x+0.1=-\frac{\sqrt{1501}}{10}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{1501}-1}{10} x=\frac{-\sqrt{1501}-1}{10}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 0.1 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}