x ^ { y } - d x - k = 0
d ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}d=\frac{x^{y}-k}{x}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }k=0\end{matrix}\right.
k ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
k=x^{y}-dx
d ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}d=\frac{x^{y}-k}{x}\text{, }&x>0\text{ or }\left(Denominator(y)\text{bmod}2=1\text{ and }x<0\right)\\d\in \mathrm{R}\text{, }&x=0\text{ and }k=0\text{ and }y>0\end{matrix}\right.
k ਲਈ ਹਲ ਕਰੋ
k=x^{y}-dx
\left(x<0\text{ and }Denominator(y)\text{bmod}2=1\right)\text{ or }\left(x=0\text{ and }y>0\right)\text{ or }x>0
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-dx-k=-x^{y}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{y} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-dx=-x^{y}+k
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ k ਜੋੜੋ।
\left(-x\right)d=k-x^{y}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
d=\frac{k-x^{y}}{-x}
-x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
d=-\frac{k-x^{y}}{x}
k-x^{y} ਨੂੰ -x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-dx-k=-x^{y}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{y} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-k=-x^{y}+dx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ dx ਜੋੜੋ।
-k=dx-x^{y}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{dx-x^{y}}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
k=x^{y}-dx
-x^{y}+dx ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-dx-k=-x^{y}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{y} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-dx=-x^{y}+k
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ k ਜੋੜੋ।
\left(-x\right)d=k-x^{y}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
d=\frac{k-x^{y}}{-x}
-x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
d=-\frac{k-x^{y}}{x}
k-x^{y} ਨੂੰ -x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-dx-k=-x^{y}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{y} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-k=-x^{y}+dx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ dx ਜੋੜੋ।
-k=dx-x^{y}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{dx-x^{y}}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
k=x^{y}-dx
-x^{y}+dx ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}