ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

y^{6}x^{6}-9y^{3}x^{3}+8
x^{6}y^{6}-9x^{3}y^{3}+8 ਨੂੰ x ਵੇਰੀਏਬਲ ਦੇ ਉੱਤੇ ਪੋਲੀਨੋਮਿਅਨ ਵਜੋਂ ਮੰਨੋ।
\left(x^{3}y^{3}-8\right)\left(x^{3}y^{3}-1\right)
y^{k}x^{m}+n ਰੂਪ ਵਿੱਚ ਇੱਕ ਫੈਕਟਰ ਲੱਭੋ, ਜਿੱਥੇ y^{k}x^{m} ਉੱਚਤਮ ਪਾਵਰ y^{6}x^{6} ਵਾਲੇ ਇੱਕ ਮੋਨੋਮਿਅਲ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ ਅਤੇ n ਸਥਿਰ ਫੈਕਟਰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ। ਅਜਿਹਾ ਇੱਕ ਫੈਕਟਰ x^{3}y^{3}-8 ਹੈ। ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਇਸ ਫੈਕਟਰ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਇਸਦੇ ਫੈਕਟਰ ਬਣਾਓ।
\left(xy-2\right)\left(x^{2}y^{2}+2xy+4\right)
x^{3}y^{3}-8 'ਤੇ ਵਿਚਾਰ ਕਰੋ। x^{3}y^{3}-8 ਨੂੰ \left(xy\right)^{3}-2^{3} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਕਿਊਬਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right)।
\left(xy-1\right)\left(x^{2}y^{2}+xy+1\right)
x^{3}y^{3}-1 'ਤੇ ਵਿਚਾਰ ਕਰੋ। x^{3}y^{3}-1 ਨੂੰ \left(xy\right)^{3}-1^{3} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਕਿਊਬਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right)।
\left(xy-2\right)\left(xy-1\right)\left(x^{2}y^{2}+xy+1\right)\left(x^{2}y^{2}+2xy+4\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।