ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{3}\left(x^{2}-1\right)+27\left(x^{2}-1\right)
ਸਮੂਹੀਕਰਨ x^{5}-x^{3}+27x^{2}-27=\left(x^{5}-x^{3}\right)+\left(27x^{2}-27\right) ਕਰੋ, ਅਤੇ ਪਹਿਲੇ ਵਿੱਚੋਂ x^{3} ਦਾ ਫੈਕਟਰ ਕੱਢੋ ਅਤੇ ਦੂਜੇ ਸਮੂਹ ਵਿੱਚ 27 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(x^{2}-1\right)\left(x^{3}+27\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x^{2}-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(x-1\right)\left(x+1\right)
x^{2}-1 'ਤੇ ਵਿਚਾਰ ਕਰੋ। x^{2}-1 ਨੂੰ x^{2}-1^{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
\left(x+3\right)\left(x^{2}-3x+9\right)
x^{3}+27 'ਤੇ ਵਿਚਾਰ ਕਰੋ। x^{3}+27 ਨੂੰ x^{3}+3^{3} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਕਿਊਬਾਂ ਦੇ ਜੋੜ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)।
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ। ਪੋਲੀਨੋਮਿਅਲ x^{2}-3x+9 ਦੇ ਫੈਕਟਰ ਨਹੀਂ ਬਣਾਏ ਜਾਂਦੇ ਕਿਉਂਕਿ ਇਸਦੇ ਕੋਈ ਰੈਸ਼ਨਲ ਰੂਟ ਨਹੀਂ ਹਨ।