a ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}a=-\frac{x^{3}+bx+c}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }c=0\end{matrix}\right.
b ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}b=-\frac{x^{3}+ax^{2}+c}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&x=0\text{ and }c=0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
ax^{2}+bx+c=-x^{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{3} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
ax^{2}+c=-x^{3}-bx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ bx ਨੂੰ ਘਟਾ ਦਿਓ।
ax^{2}=-x^{3}-bx-c
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ c ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}a=-x^{3}-bx-c
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{x^{2}a}{x^{2}}=\frac{-x^{3}-bx-c}{x^{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x^{2} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=\frac{-x^{3}-bx-c}{x^{2}}
x^{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x^{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=-\frac{bx+c}{x^{2}}-x
-x^{3}-bx-c ਨੂੰ x^{2} ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ax^{2}+bx+c=-x^{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{3} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
bx+c=-x^{3}-ax^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ ax^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
bx=-x^{3}-ax^{2}-c
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ c ਨੂੰ ਘਟਾ ਦਿਓ।
xb=-x^{3}-ax^{2}-c
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{xb}{x}=\frac{-x^{3}-ax^{2}-c}{x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{-x^{3}-ax^{2}-c}{x}
x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=-ax-x^{2}-\frac{c}{x}
-x^{3}-ax^{2}-c ਨੂੰ x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}