ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-8x-9=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\left(-9\right)}}{2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 1 ਨੂੰ a ਦੇ ਨਾਲ, -8 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -9 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{8±10}{2}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=9 x=-1
x=\frac{8±10}{2} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
\left(x-9\right)\left(x+1\right)>0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x-9<0 x+1<0
ਗੁਣਜ ਨੂੰ ਪੋਜ਼ੇਟਿਵ ਹੋਣ ਲਈ, x-9 ਅਤੇ x+1 ਨੂੰ ਦੋਵੇਂ ਪੋਜ਼ੇਟਿਵ ਜਾਂ ਦੋਵੇਂ ਨੇਗੇਟਿਵ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਜਦੋਂ x-9 ਅਤੇ x+1 ਦੋਵੇ ਨੇਗੇਟਿਵ ਹੋਣ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x<-1
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x<-1 ਹੁੰਦਾ ਹੈ।
x+1>0 x-9>0
ਜਦੋਂ x-9 ਅਤੇ x+1 ਦੋਵੇਂ ਪੋਜ਼ੇਟਿਵ ਹੋਣ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x>9
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x>9 ਹੁੰਦਾ ਹੈ।
x<-1\text{; }x>9
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।