ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
-4 ਨੂੰ x^{2}+x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-3x^{2}-4x-8=3x^{2}+4x+4
-3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -4x^{2} ਨੂੰ ਮਿਲਾਓ।
-3x^{2}-4x-8-3x^{2}=4x+4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-4x-8=4x+4
-6x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
-6x^{2}-4x-8-4x=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-8x-8=4
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
-6x^{2}-8x-8-4=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-8x-12=0
-12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -6 ਨੂੰ a ਲਈ, -8 ਨੂੰ b ਲਈ, ਅਤੇ -12 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
-8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{64+24\left(-12\right)}}{2\left(-6\right)}
-4 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{64-288}}{2\left(-6\right)}
24 ਨੂੰ -12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{-224}}{2\left(-6\right)}
64 ਨੂੰ -288 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-8\right)±4\sqrt{14}i}{2\left(-6\right)}
-224 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{8±4\sqrt{14}i}{2\left(-6\right)}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
x=\frac{8±4\sqrt{14}i}{-12}
2 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{8+4\sqrt{14}i}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{8±4\sqrt{14}i}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 8 ਨੂੰ 4i\sqrt{14} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{14}i-2}{3}
8+4i\sqrt{14} ਨੂੰ -12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-4\sqrt{14}i+8}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{8±4\sqrt{14}i}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 8 ਵਿੱਚੋਂ 4i\sqrt{14} ਨੂੰ ਘਟਾਓ।
x=\frac{-2+\sqrt{14}i}{3}
8-4i\sqrt{14} ਨੂੰ -12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{14}i-2}{3} x=\frac{-2+\sqrt{14}i}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
-4 ਨੂੰ x^{2}+x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-3x^{2}-4x-8=3x^{2}+4x+4
-3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -4x^{2} ਨੂੰ ਮਿਲਾਓ।
-3x^{2}-4x-8-3x^{2}=4x+4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-4x-8=4x+4
-6x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
-6x^{2}-4x-8-4x=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-8x-8=4
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
-6x^{2}-8x=4+8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 8 ਜੋੜੋ।
-6x^{2}-8x=12
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 8 ਨੂੰ ਜੋੜੋ।
\frac{-6x^{2}-8x}{-6}=\frac{12}{-6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{8}{-6}\right)x=\frac{12}{-6}
-6 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{4}{3}x=\frac{12}{-6}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-8}{-6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{4}{3}x=-2
12 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-2+\left(\frac{2}{3}\right)^{2}
\frac{4}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{2}{3} ਨਿਕਲੇ। ਫੇਰ, \frac{2}{3} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{4}{3}x+\frac{4}{9}=-2+\frac{4}{9}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{2}{3} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{14}{9}
-2 ਨੂੰ \frac{4}{9} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{2}{3}\right)^{2}=-\frac{14}{9}
ਫੈਕਟਰ x^{2}+\frac{4}{3}x+\frac{4}{9}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{-\frac{14}{9}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{2}{3}=\frac{\sqrt{14}i}{3} x+\frac{2}{3}=-\frac{\sqrt{14}i}{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{-2+\sqrt{14}i}{3} x=\frac{-\sqrt{14}i-2}{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{2}{3} ਨੂੰ ਘਟਾਓ।