x ਲਈ ਹਲ ਕਰੋ
x = \frac{\sqrt{145605} + 379}{2} \approx 380.291116145
x=\frac{379-\sqrt{145605}}{2}\approx -1.291116145
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}-379x-188=303
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x^{2}-379x-188-303=303-303
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 303 ਨੂੰ ਘਟਾਓ।
x^{2}-379x-188-303=0
303 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x^{2}-379x-491=0
-188 ਵਿੱਚੋਂ 303 ਨੂੰ ਘਟਾਓ।
x=\frac{-\left(-379\right)±\sqrt{\left(-379\right)^{2}-4\left(-491\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -379 ਨੂੰ b ਲਈ, ਅਤੇ -491 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-379\right)±\sqrt{143641-4\left(-491\right)}}{2}
-379 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-379\right)±\sqrt{143641+1964}}{2}
-4 ਨੂੰ -491 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-379\right)±\sqrt{145605}}{2}
143641 ਨੂੰ 1964 ਵਿੱਚ ਜੋੜੋ।
x=\frac{379±\sqrt{145605}}{2}
-379 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 379 ਹੈ।
x=\frac{\sqrt{145605}+379}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{379±\sqrt{145605}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 379 ਨੂੰ \sqrt{145605} ਵਿੱਚ ਜੋੜੋ।
x=\frac{379-\sqrt{145605}}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{379±\sqrt{145605}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 379 ਵਿੱਚੋਂ \sqrt{145605} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{145605}+379}{2} x=\frac{379-\sqrt{145605}}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-379x-188=303
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}-379x-188-\left(-188\right)=303-\left(-188\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 188 ਨੂੰ ਜੋੜੋ।
x^{2}-379x=303-\left(-188\right)
-188 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x^{2}-379x=491
303 ਵਿੱਚੋਂ -188 ਨੂੰ ਘਟਾਓ।
x^{2}-379x+\left(-\frac{379}{2}\right)^{2}=491+\left(-\frac{379}{2}\right)^{2}
-379, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{379}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{379}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-379x+\frac{143641}{4}=491+\frac{143641}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{379}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-379x+\frac{143641}{4}=\frac{145605}{4}
491 ਨੂੰ \frac{143641}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{379}{2}\right)^{2}=\frac{145605}{4}
ਫੈਕਟਰ x^{2}-379x+\frac{143641}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{379}{2}\right)^{2}}=\sqrt{\frac{145605}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{379}{2}=\frac{\sqrt{145605}}{2} x-\frac{379}{2}=-\frac{\sqrt{145605}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{145605}+379}{2} x=\frac{379-\sqrt{145605}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{379}{2} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}