ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-3x+10=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 10}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -3 ਨੂੰ b ਲਈ, ਅਤੇ 10 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-3\right)±\sqrt{9-4\times 10}}{2}
-3 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{9-40}}{2}
-4 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{-31}}{2}
9 ਨੂੰ -40 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-3\right)±\sqrt{31}i}{2}
-31 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{3±\sqrt{31}i}{2}
-3 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 3 ਹੈ।
x=\frac{3+\sqrt{31}i}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±\sqrt{31}i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ i\sqrt{31} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{31}i+3}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±\sqrt{31}i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 3 ਵਿੱਚੋਂ i\sqrt{31} ਨੂੰ ਘਟਾਓ।
x=\frac{3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-3x+10=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}-3x+10-10=-10
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10 ਨੂੰ ਘਟਾਓ।
x^{2}-3x=-10
10 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-10+\left(-\frac{3}{2}\right)^{2}
-3, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{3}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-3x+\frac{9}{4}=-10+\frac{9}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{3}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-3x+\frac{9}{4}=-\frac{31}{4}
-10 ਨੂੰ \frac{9}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{3}{2}\right)^{2}=-\frac{31}{4}
ਫੈਕਟਰ x^{2}-3x+\frac{9}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{3}{2}=\frac{\sqrt{31}i}{2} x-\frac{3}{2}=-\frac{\sqrt{31}i}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{3}{2} ਨੂੰ ਜੋੜੋ।