ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-23 ab=1\times 132=132
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ x^{2}+ax+bx+132 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-132 -2,-66 -3,-44 -4,-33 -6,-22 -11,-12
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 132 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-132=-133 -2-66=-68 -3-44=-47 -4-33=-37 -6-22=-28 -11-12=-23
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-12 b=-11
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -23 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-12x\right)+\left(-11x+132\right)
x^{2}-23x+132 ਨੂੰ \left(x^{2}-12x\right)+\left(-11x+132\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-12\right)-11\left(x-12\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -11 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-12\right)\left(x-11\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-12 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x^{2}-23x+132=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 132}}{2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-23\right)±\sqrt{529-4\times 132}}{2}
-23 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-23\right)±\sqrt{529-528}}{2}
-4 ਨੂੰ 132 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-23\right)±\sqrt{1}}{2}
529 ਨੂੰ -528 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-23\right)±1}{2}
1 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{23±1}{2}
-23 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 23 ਹੈ।
x=\frac{24}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{23±1}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 23 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
x=12
24 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{22}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{23±1}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 23 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
x=11
22 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-23x+132=\left(x-12\right)\left(x-11\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਨੂੰ ਵਰਤ ਕੇ ਮੂਲ ਐਕਸਪ੍ਰੈਸ਼ਨ ਦਾ ਫੈਕਟਰ ਬਣਾਓ। x_{1} ਦੀ ਥਾਂ ਤੇ 12 ਅਤੇ x_{2} ਦੀ ਥਾਂ ਤੇ 11 ਨੂੰ ਲਗਾਓ।