ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-20 ab=100
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ x^{2}-20x+100 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 100 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-10 b=-10
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -20 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x-10\right)\left(x-10\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(x+a\right)\left(x+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
\left(x-10\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
x=10
ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕੱਢਣ ਲਈ, x-10=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a+b=-20 ab=1\times 100=100
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx+100 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 100 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-10 b=-10
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -20 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-10x\right)+\left(-10x+100\right)
x^{2}-20x+100 ਨੂੰ \left(x^{2}-10x\right)+\left(-10x+100\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-10\right)-10\left(x-10\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -10 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-10\right)\left(x-10\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-10 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(x-10\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
x=10
ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕੱਢਣ ਲਈ, x-10=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}-20x+100=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 100}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -20 ਨੂੰ b ਲਈ, ਅਤੇ 100 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-20\right)±\sqrt{400-4\times 100}}{2}
-20 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{400-400}}{2}
-4 ਨੂੰ 100 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{0}}{2}
400 ਨੂੰ -400 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{-20}{2}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{20}{2}
-20 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 20 ਹੈ।
x=10
20 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-20x+100=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\left(x-10\right)^{2}=0
ਫੈਕਟਰ x^{2}-20x+100। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-10\right)^{2}}=\sqrt{0}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-10=0 x-10=0
ਸਪਸ਼ਟ ਕਰੋ।
x=10 x=10
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10 ਨੂੰ ਜੋੜੋ।
x=10
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ। ਹੱਲ ਸਮਾਨ ਹਨ।