ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-16x-48=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-48\right)}}{2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-48\right)}}{2}
-16 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-16\right)±\sqrt{256+192}}{2}
-4 ਨੂੰ -48 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-16\right)±\sqrt{448}}{2}
256 ਨੂੰ 192 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-16\right)±8\sqrt{7}}{2}
448 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{16±8\sqrt{7}}{2}
-16 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 16 ਹੈ।
x=\frac{8\sqrt{7}+16}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{16±8\sqrt{7}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 16 ਨੂੰ 8\sqrt{7} ਵਿੱਚ ਜੋੜੋ।
x=4\sqrt{7}+8
16+8\sqrt{7} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{16-8\sqrt{7}}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{16±8\sqrt{7}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 16 ਵਿੱਚੋਂ 8\sqrt{7} ਨੂੰ ਘਟਾਓ।
x=8-4\sqrt{7}
16-8\sqrt{7} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-16x-48=\left(x-\left(4\sqrt{7}+8\right)\right)\left(x-\left(8-4\sqrt{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 8+4\sqrt{7}ਅਤੇ x_{2} ਲਈ 8-4\sqrt{7} ਬਦਲ ਹੈ।