ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-0+20x-2x-16=0
ਸਿਫਰ ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਰਕਮ ਦਾ ਜਵਾਬ ਸਿਫਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
x^{2}-0+18x-16=0
18x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}+18x-16=0
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 18 ਨੂੰ b ਲਈ, ਅਤੇ -16 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-18±\sqrt{324-4\left(-16\right)}}{2}
18 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-18±\sqrt{324+64}}{2}
-4 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-18±\sqrt{388}}{2}
324 ਨੂੰ 64 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-18±2\sqrt{97}}{2}
388 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{2\sqrt{97}-18}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±2\sqrt{97}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -18 ਨੂੰ 2\sqrt{97} ਵਿੱਚ ਜੋੜੋ।
x=\sqrt{97}-9
-18+2\sqrt{97} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{97}-18}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±2\sqrt{97}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -18 ਵਿੱਚੋਂ 2\sqrt{97} ਨੂੰ ਘਟਾਓ।
x=-\sqrt{97}-9
-18-2\sqrt{97} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\sqrt{97}-9 x=-\sqrt{97}-9
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-0+20x-2x-16=0
ਸਿਫਰ ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਰਕਮ ਦਾ ਜਵਾਬ ਸਿਫਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
x^{2}-0+18x-16=0
18x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}-0+18x=16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x^{2}+18x=16
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
x^{2}+18x+9^{2}=16+9^{2}
18, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 9 ਨਿਕਲੇ। ਫੇਰ, 9 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+18x+81=16+81
9 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+18x+81=97
16 ਨੂੰ 81 ਵਿੱਚ ਜੋੜੋ।
\left(x+9\right)^{2}=97
ਫੈਕਟਰ x^{2}+18x+81। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+9\right)^{2}}=\sqrt{97}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+9=\sqrt{97} x+9=-\sqrt{97}
ਸਪਸ਼ਟ ਕਰੋ।
x=\sqrt{97}-9 x=-\sqrt{97}-9
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9 ਨੂੰ ਘਟਾਓ।
x^{2}-0+20x-2x-16=0
ਸਿਫਰ ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਰਕਮ ਦਾ ਜਵਾਬ ਸਿਫਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
x^{2}-0+18x-16=0
18x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}+18x-16=0
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 18 ਨੂੰ b ਲਈ, ਅਤੇ -16 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-18±\sqrt{324-4\left(-16\right)}}{2}
18 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-18±\sqrt{324+64}}{2}
-4 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-18±\sqrt{388}}{2}
324 ਨੂੰ 64 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-18±2\sqrt{97}}{2}
388 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{2\sqrt{97}-18}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±2\sqrt{97}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -18 ਨੂੰ 2\sqrt{97} ਵਿੱਚ ਜੋੜੋ।
x=\sqrt{97}-9
-18+2\sqrt{97} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{97}-18}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±2\sqrt{97}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -18 ਵਿੱਚੋਂ 2\sqrt{97} ਨੂੰ ਘਟਾਓ।
x=-\sqrt{97}-9
-18-2\sqrt{97} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\sqrt{97}-9 x=-\sqrt{97}-9
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-0+20x-2x-16=0
ਸਿਫਰ ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਰਕਮ ਦਾ ਜਵਾਬ ਸਿਫਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
x^{2}-0+18x-16=0
18x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}-0+18x=16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x^{2}+18x=16
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
x^{2}+18x+9^{2}=16+9^{2}
18, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 9 ਨਿਕਲੇ। ਫੇਰ, 9 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+18x+81=16+81
9 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+18x+81=97
16 ਨੂੰ 81 ਵਿੱਚ ਜੋੜੋ।
\left(x+9\right)^{2}=97
ਫੈਕਟਰ x^{2}+18x+81। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+9\right)^{2}}=\sqrt{97}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+9=\sqrt{97} x+9=-\sqrt{97}
ਸਪਸ਼ਟ ਕਰੋ।
x=\sqrt{97}-9 x=-\sqrt{97}-9
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9 ਨੂੰ ਘਟਾਓ।