ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}+2x-15=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-15\right)}}{2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 1 ਨੂੰ a ਦੇ ਨਾਲ, 2 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -15 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{-2±8}{2}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=3 x=-5
x=\frac{-2±8}{2} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
\left(x-3\right)\left(x+5\right)>0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x-3<0 x+5<0
ਗੁਣਜ ਨੂੰ ਪੋਜ਼ੇਟਿਵ ਹੋਣ ਲਈ, x-3 ਅਤੇ x+5 ਨੂੰ ਦੋਵੇਂ ਪੋਜ਼ੇਟਿਵ ਜਾਂ ਦੋਵੇਂ ਨੇਗੇਟਿਵ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਜਦੋਂ x-3 ਅਤੇ x+5 ਦੋਵੇ ਨੇਗੇਟਿਵ ਹੋਣ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x<-5
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x<-5 ਹੁੰਦਾ ਹੈ।
x+5>0 x-3>0
ਜਦੋਂ x-3 ਅਤੇ x+5 ਦੋਵੇਂ ਪੋਜ਼ੇਟਿਵ ਹੋਣ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x>3
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x>3 ਹੁੰਦਾ ਹੈ।
x<-5\text{; }x>3
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।