ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}+13x+58+2x=8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x ਜੋੜੋ।
x^{2}+15x+58=8
15x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13x ਅਤੇ 2x ਨੂੰ ਮਿਲਾਓ।
x^{2}+15x+58-8=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+15x+50=0
50 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 58 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=15 ab=50
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ x^{2}+15x+50 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,50 2,25 5,10
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 50 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+50=51 2+25=27 5+10=15
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=5 b=10
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 15 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x+5\right)\left(x+10\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(x+a\right)\left(x+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x=-5 x=-10
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x+5=0 ਅਤੇ x+10=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}+13x+58+2x=8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x ਜੋੜੋ।
x^{2}+15x+58=8
15x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13x ਅਤੇ 2x ਨੂੰ ਮਿਲਾਓ।
x^{2}+15x+58-8=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+15x+50=0
50 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 58 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=15 ab=1\times 50=50
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx+50 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,50 2,25 5,10
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 50 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+50=51 2+25=27 5+10=15
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=5 b=10
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 15 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}+5x\right)+\left(10x+50\right)
x^{2}+15x+50 ਨੂੰ \left(x^{2}+5x\right)+\left(10x+50\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x+5\right)+10\left(x+5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 10 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x+5\right)\left(x+10\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x+5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=-5 x=-10
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x+5=0 ਅਤੇ x+10=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}+13x+58+2x=8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x ਜੋੜੋ।
x^{2}+15x+58=8
15x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13x ਅਤੇ 2x ਨੂੰ ਮਿਲਾਓ।
x^{2}+15x+58-8=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+15x+50=0
50 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 58 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-15±\sqrt{15^{2}-4\times 50}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 15 ਨੂੰ b ਲਈ, ਅਤੇ 50 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-15±\sqrt{225-4\times 50}}{2}
15 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-15±\sqrt{225-200}}{2}
-4 ਨੂੰ 50 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-15±\sqrt{25}}{2}
225 ਨੂੰ -200 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-15±5}{2}
25 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=-\frac{10}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-15±5}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -15 ਨੂੰ 5 ਵਿੱਚ ਜੋੜੋ।
x=-5
-10 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{20}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-15±5}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -15 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾਓ।
x=-10
-20 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-5 x=-10
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}+13x+58+2x=8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x ਜੋੜੋ।
x^{2}+15x+58=8
15x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13x ਅਤੇ 2x ਨੂੰ ਮਿਲਾਓ।
x^{2}+15x=8-58
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 58 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+15x=-50
-50 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਵਿੱਚੋਂ 58 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=-50+\left(\frac{15}{2}\right)^{2}
15, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{15}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{15}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+15x+\frac{225}{4}=-50+\frac{225}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{15}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+15x+\frac{225}{4}=\frac{25}{4}
-50 ਨੂੰ \frac{225}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{15}{2}\right)^{2}=\frac{25}{4}
ਫੈਕਟਰ x^{2}+15x+\frac{225}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{15}{2}=\frac{5}{2} x+\frac{15}{2}=-\frac{5}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=-5 x=-10
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{15}{2} ਨੂੰ ਘਟਾਓ।