ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

48x^{2}+8x+27-32=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 48, ਜੋ 6,16,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
48x^{2}+8x-5=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 27 ਵਿੱਚੋਂ 32 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=8 ab=48\left(-5\right)=-240
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 48x^{2}+ax+bx-5 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -240 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-12 b=20
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(48x^{2}-12x\right)+\left(20x-5\right)
48x^{2}+8x-5 ਨੂੰ \left(48x^{2}-12x\right)+\left(20x-5\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
12x\left(4x-1\right)+5\left(4x-1\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 12x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 5 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(4x-1\right)\left(12x+5\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 4x-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=\frac{1}{4} x=-\frac{5}{12}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 4x-1=0 ਅਤੇ 12x+5=0 ਨੂੰ ਹੱਲ ਕਰੋ।
48x^{2}+8x+27-32=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 48, ਜੋ 6,16,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
48x^{2}+8x-5=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 27 ਵਿੱਚੋਂ 32 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-8±\sqrt{8^{2}-4\times 48\left(-5\right)}}{2\times 48}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 48 ਨੂੰ a ਲਈ, 8 ਨੂੰ b ਲਈ, ਅਤੇ -5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-8±\sqrt{64-4\times 48\left(-5\right)}}{2\times 48}
8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-8±\sqrt{64-192\left(-5\right)}}{2\times 48}
-4 ਨੂੰ 48 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{64+960}}{2\times 48}
-192 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{1024}}{2\times 48}
64 ਨੂੰ 960 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-8±32}{2\times 48}
1024 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-8±32}{96}
2 ਨੂੰ 48 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{24}{96}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±32}{96} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -8 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
x=\frac{1}{4}
24 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{24}{96} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{40}{96}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±32}{96} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -8 ਵਿੱਚੋਂ 32 ਨੂੰ ਘਟਾਓ।
x=-\frac{5}{12}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-40}{96} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{1}{4} x=-\frac{5}{12}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
48x^{2}+8x+27-32=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 48, ਜੋ 6,16,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
48x^{2}+8x-5=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 27 ਵਿੱਚੋਂ 32 ਨੂੰ ਘਟਾ ਦਿਓ।
48x^{2}+8x=5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{48x^{2}+8x}{48}=\frac{5}{48}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 48 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{8}{48}x=\frac{5}{48}
48 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 48 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{6}x=\frac{5}{48}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{8}{48} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{5}{48}+\left(\frac{1}{12}\right)^{2}
\frac{1}{6}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{12} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{12} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{5}{48}+\frac{1}{144}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{12} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{9}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{5}{48} ਨੂੰ \frac{1}{144} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{1}{12}\right)^{2}=\frac{1}{9}
ਫੈਕਟਰ x^{2}+\frac{1}{6}x+\frac{1}{144}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{1}{9}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{12}=\frac{1}{3} x+\frac{1}{12}=-\frac{1}{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{1}{4} x=-\frac{5}{12}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{12} ਨੂੰ ਘਟਾਓ।