ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x+x^{2}=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x^{2} ਜੋੜੋ।
x+x^{2}-4=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+x-4=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-1±\sqrt{1^{2}-4\left(-4\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 1 ਨੂੰ b ਲਈ, ਅਤੇ -4 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-1±\sqrt{1-4\left(-4\right)}}{2}
1 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-1±\sqrt{1+16}}{2}
-4 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-1±\sqrt{17}}{2}
1 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{17}-1}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-1±\sqrt{17}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -1 ਨੂੰ \sqrt{17} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{17}-1}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-1±\sqrt{17}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -1 ਵਿੱਚੋਂ \sqrt{17} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{17}-1}{2} x=\frac{-\sqrt{17}-1}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x+x^{2}=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x^{2} ਜੋੜੋ।
x^{2}+x=4
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}+x+\left(\frac{1}{2}\right)^{2}=4+\left(\frac{1}{2}\right)^{2}
1, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+x+\frac{1}{4}=4+\frac{1}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+x+\frac{1}{4}=\frac{17}{4}
4 ਨੂੰ \frac{1}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{1}{2}\right)^{2}=\frac{17}{4}
ਫੈਕਟਰ x^{2}+x+\frac{1}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{2}=\frac{\sqrt{17}}{2} x+\frac{1}{2}=-\frac{\sqrt{17}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{17}-1}{2} x=\frac{-\sqrt{17}-1}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{2} ਨੂੰ ਘਟਾਓ।