x ਲਈ ਹਲ ਕਰੋ
x = \frac{\sqrt{145} + 1}{12} \approx 1.086799548
x=\frac{1-\sqrt{145}}{12}\approx -0.920132882
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x=\frac{6}{6x}+\frac{x}{6x}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਅਤੇ 6 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6x ਹੈ। \frac{1}{x} ਨੂੰ \frac{6}{6} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{6} ਨੂੰ \frac{x}{x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6+x}{6x}
ਕਿਉਂਕਿ \frac{6}{6x} ਅਤੇ \frac{x}{6x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
x-\frac{6+x}{6x}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{6+x}{6x} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਨੂੰ \frac{6x}{6x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x\times 6x-\left(6+x\right)}{6x}=0
ਕਿਉਂਕਿ \frac{x\times 6x}{6x} ਅਤੇ \frac{6+x}{6x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{6x^{2}-6-x}{6x}=0
x\times 6x-\left(6+x\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
\frac{6x^{2}-6-x}{6x} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 6 ਨੂੰ ਰੱਦ ਕਰੋ।
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145}+\frac{1}{12} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{1}{12}\sqrt{145} ਹੈ।
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
\frac{1}{12}\sqrt{145}+\frac{1}{12} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
x+\frac{1}{12}\sqrt{145}-\frac{1}{12} ਦੇ ਹਰ ਸ਼ਬਦ ਨੂੰ x-\frac{1}{12}\sqrt{145}-\frac{1}{12} ਦੇ ਹਰ ਸ਼ਬਦ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਵਿਤਰਣ ਗੁਣ ਨੂੰ ਲਾਗੂ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
145 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{145} ਅਤੇ \sqrt{145} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x\left(-\frac{1}{12}\right)\sqrt{145} ਅਤੇ \frac{1}{12}\sqrt{145}x ਨੂੰ ਮਿਲਾਓ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145}{12} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{12} ਅਤੇ 145 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{145}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-145}{144} ਨੂੰ -\frac{145}{144} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{1\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-1}{144} ਨੂੰ -\frac{1}{144} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
-\frac{1}{6}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x\left(-\frac{1}{12}\right) ਅਤੇ -\frac{1}{12}x ਨੂੰ ਮਿਲਾਓ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ -\frac{1}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{1}{144}\sqrt{145} ਅਤੇ \frac{1}{144}\sqrt{145} ਨੂੰ ਮਿਲਾਓ।
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ -\frac{1}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
\frac{-\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
ਕਿਉਂਕਿ -\frac{145}{144} ਅਤੇ \frac{1}{144} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
-144 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -145 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
x^{2}-\frac{1}{6}x-1=0
-144 ਨੂੰ 144 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ।
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\left(-\frac{1}{6}\right)^{2}-4\left(-1\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -\frac{1}{6} ਨੂੰ b ਲਈ, ਅਤੇ -1 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}-4\left(-1\right)}}{2}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}+4}}{2}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{145}{36}}}{2}
\frac{1}{36} ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-\frac{1}{6}\right)±\frac{\sqrt{145}}{6}}{2}
\frac{145}{36} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2}
-\frac{1}{6} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{1}{6} ਹੈ।
x=\frac{\sqrt{145}+1}{2\times 6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। \frac{1}{6} ਨੂੰ \frac{\sqrt{145}}{6} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{145}+1}{12}
\frac{1+\sqrt{145}}{6} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{1-\sqrt{145}}{2\times 6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। \frac{1}{6} ਵਿੱਚੋਂ \frac{\sqrt{145}}{6} ਨੂੰ ਘਟਾਓ।
x=\frac{1-\sqrt{145}}{12}
\frac{1-\sqrt{145}}{6} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x=\frac{6}{6x}+\frac{x}{6x}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਅਤੇ 6 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6x ਹੈ। \frac{1}{x} ਨੂੰ \frac{6}{6} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{6} ਨੂੰ \frac{x}{x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6+x}{6x}
ਕਿਉਂਕਿ \frac{6}{6x} ਅਤੇ \frac{x}{6x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
x-\frac{6+x}{6x}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{6+x}{6x} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x ਨੂੰ \frac{6x}{6x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x\times 6x-\left(6+x\right)}{6x}=0
ਕਿਉਂਕਿ \frac{x\times 6x}{6x} ਅਤੇ \frac{6+x}{6x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{6x^{2}-6-x}{6x}=0
x\times 6x-\left(6+x\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
\frac{6x^{2}-6-x}{6x} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 6 ਨੂੰ ਰੱਦ ਕਰੋ।
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145}+\frac{1}{12} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{1}{12}\sqrt{145} ਹੈ।
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
\frac{1}{12}\sqrt{145}+\frac{1}{12} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
x+\frac{1}{12}\sqrt{145}-\frac{1}{12} ਦੇ ਹਰ ਸ਼ਬਦ ਨੂੰ x-\frac{1}{12}\sqrt{145}-\frac{1}{12} ਦੇ ਹਰ ਸ਼ਬਦ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਵਿਤਰਣ ਗੁਣ ਨੂੰ ਲਾਗੂ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
145 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{145} ਅਤੇ \sqrt{145} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x\left(-\frac{1}{12}\right)\sqrt{145} ਅਤੇ \frac{1}{12}\sqrt{145}x ਨੂੰ ਮਿਲਾਓ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145}{12} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{12} ਅਤੇ 145 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{145}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-145}{144} ਨੂੰ -\frac{145}{144} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{1\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-1}{144} ਨੂੰ -\frac{1}{144} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
-\frac{1}{6}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x\left(-\frac{1}{12}\right) ਅਤੇ -\frac{1}{12}x ਨੂੰ ਮਿਲਾਓ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ -\frac{1}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{1}{144}\sqrt{145} ਅਤੇ \frac{1}{144}\sqrt{145} ਨੂੰ ਮਿਲਾਓ।
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ -\frac{1}{12} ਟਾਈਮਸ -\frac{1}{12} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
\frac{-\left(-1\right)}{12\times 12} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
ਕਿਉਂਕਿ -\frac{145}{144} ਅਤੇ \frac{1}{144} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
-144 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -145 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
x^{2}-\frac{1}{6}x-1=0
-144 ਨੂੰ 144 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ।
x^{2}-\frac{1}{6}x=1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=1+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{6}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{12} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{12} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1}{6}x+\frac{1}{144}=1+\frac{1}{144}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{12} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{145}{144}
1 ਨੂੰ \frac{1}{144} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{1}{12}\right)^{2}=\frac{145}{144}
ਫੈਕਟਰ x^{2}-\frac{1}{6}x+\frac{1}{144}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{145}{144}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{1}{12}=\frac{\sqrt{145}}{12} x-\frac{1}{12}=-\frac{\sqrt{145}}{12}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{12} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}