ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

xyz^{2}=y+z^{2}
ਵੇਰੀਏਬਲ y, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ yz^{2}, ਜੋ z^{2},y ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
xyz^{2}-y=z^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ y ਨੂੰ ਘਟਾ ਦਿਓ।
\left(xz^{2}-1\right)y=z^{2}
y ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(xz^{2}-1\right)y}{xz^{2}-1}=\frac{z^{2}}{xz^{2}-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ xz^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{z^{2}}{xz^{2}-1}
xz^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ xz^{2}-1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=\frac{z^{2}}{xz^{2}-1}\text{, }y\neq 0
ਵੇਰੀਏਬਲ y, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।