x ਲਈ ਹਲ ਕਰੋ
x=\frac{9\left(y-16\right)}{20}
y ਲਈ ਹਲ ਕਰੋ
y=\frac{20x}{9}+16
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
4x-3y=24x-12y+144
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12, ਜੋ 3,4 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4x-3y-24x=-12y+144
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 24x ਨੂੰ ਘਟਾ ਦਿਓ।
-20x-3y=-12y+144
-20x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -24x ਨੂੰ ਮਿਲਾਓ।
-20x=-12y+144+3y
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3y ਜੋੜੋ।
-20x=-9y+144
-9y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -12y ਅਤੇ 3y ਨੂੰ ਮਿਲਾਓ।
-20x=144-9y
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{-20x}{-20}=\frac{144-9y}{-20}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -20 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{144-9y}{-20}
-20 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -20 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{9y}{20}-\frac{36}{5}
-9y+144 ਨੂੰ -20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
4x-3y=24x-12y+144
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12, ਜੋ 3,4 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4x-3y+12y=24x+144
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 12y ਜੋੜੋ।
4x+9y=24x+144
9y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3y ਅਤੇ 12y ਨੂੰ ਮਿਲਾਓ।
9y=24x+144-4x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
9y=20x+144
20x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 24x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
\frac{9y}{9}=\frac{20x+144}{9}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 9 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{20x+144}{9}
9 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 9 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=\frac{20x}{9}+16
20x+144 ਨੂੰ 9 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}