ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
t ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=6 ab=-72
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ t^{2}+6t-72 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -72 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-6 b=12
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 6 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(t-6\right)\left(t+12\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(t+a\right)\left(t+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
t=6 t=-12
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, t-6=0 ਅਤੇ t+12=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a+b=6 ab=1\left(-72\right)=-72
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ t^{2}+at+bt-72 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -72 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-6 b=12
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 6 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(t^{2}-6t\right)+\left(12t-72\right)
t^{2}+6t-72 ਨੂੰ \left(t^{2}-6t\right)+\left(12t-72\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
t\left(t-6\right)+12\left(t-6\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ t ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 12 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(t-6\right)\left(t+12\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ t-6 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
t=6 t=-12
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, t-6=0 ਅਤੇ t+12=0 ਨੂੰ ਹੱਲ ਕਰੋ।
t^{2}+6t-72=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
t=\frac{-6±\sqrt{6^{2}-4\left(-72\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 6 ਨੂੰ b ਲਈ, ਅਤੇ -72 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
t=\frac{-6±\sqrt{36-4\left(-72\right)}}{2}
6 ਦਾ ਵਰਗ ਕਰੋ।
t=\frac{-6±\sqrt{36+288}}{2}
-4 ਨੂੰ -72 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-6±\sqrt{324}}{2}
36 ਨੂੰ 288 ਵਿੱਚ ਜੋੜੋ।
t=\frac{-6±18}{2}
324 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t=\frac{12}{2}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-6±18}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -6 ਨੂੰ 18 ਵਿੱਚ ਜੋੜੋ।
t=6
12 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=-\frac{24}{2}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-6±18}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -6 ਵਿੱਚੋਂ 18 ਨੂੰ ਘਟਾਓ।
t=-12
-24 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=6 t=-12
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
t^{2}+6t-72=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
t^{2}+6t-72-\left(-72\right)=-\left(-72\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 72 ਨੂੰ ਜੋੜੋ।
t^{2}+6t=-\left(-72\right)
-72 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
t^{2}+6t=72
0 ਵਿੱਚੋਂ -72 ਨੂੰ ਘਟਾਓ।
t^{2}+6t+3^{2}=72+3^{2}
6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3 ਨਿਕਲੇ। ਫੇਰ, 3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
t^{2}+6t+9=72+9
3 ਦਾ ਵਰਗ ਕਰੋ।
t^{2}+6t+9=81
72 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(t+3\right)^{2}=81
ਫੈਕਟਰ t^{2}+6t+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(t+3\right)^{2}}=\sqrt{81}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t+3=9 t+3=-9
ਸਪਸ਼ਟ ਕਰੋ।
t=6 t=-12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।