r ਲਈ ਹਲ ਕਰੋ
r=-4
r=9
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
r^{2}-r-36=4r
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-r-36-4r=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-5r-36=0
-5r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -r ਅਤੇ -4r ਨੂੰ ਮਿਲਾਓ।
a+b=-5 ab=-36
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ r^{2}-5r-36 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-36 2,-18 3,-12 4,-9 6,-6
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -36 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-9 b=4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -5 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(r-9\right)\left(r+4\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(r+a\right)\left(r+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
r=9 r=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, r-9=0 ਅਤੇ r+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
r^{2}-r-36=4r
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-r-36-4r=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-5r-36=0
-5r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -r ਅਤੇ -4r ਨੂੰ ਮਿਲਾਓ।
a+b=-5 ab=1\left(-36\right)=-36
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ r^{2}+ar+br-36 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-36 2,-18 3,-12 4,-9 6,-6
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -36 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-9 b=4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -5 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(r^{2}-9r\right)+\left(4r-36\right)
r^{2}-5r-36 ਨੂੰ \left(r^{2}-9r\right)+\left(4r-36\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
r\left(r-9\right)+4\left(r-9\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ r ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(r-9\right)\left(r+4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ r-9 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
r=9 r=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, r-9=0 ਅਤੇ r+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
r^{2}-r-36=4r
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-r-36-4r=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-5r-36=0
-5r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -r ਅਤੇ -4r ਨੂੰ ਮਿਲਾਓ।
r=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -5 ਨੂੰ b ਲਈ, ਅਤੇ -36 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
r=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
-5 ਦਾ ਵਰਗ ਕਰੋ।
r=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
-4 ਨੂੰ -36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
r=\frac{-\left(-5\right)±\sqrt{169}}{2}
25 ਨੂੰ 144 ਵਿੱਚ ਜੋੜੋ।
r=\frac{-\left(-5\right)±13}{2}
169 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
r=\frac{5±13}{2}
-5 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5 ਹੈ।
r=\frac{18}{2}
ਹੁਣ, ਸਮੀਕਰਨ r=\frac{5±13}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 5 ਨੂੰ 13 ਵਿੱਚ ਜੋੜੋ।
r=9
18 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
r=-\frac{8}{2}
ਹੁਣ, ਸਮੀਕਰਨ r=\frac{5±13}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 5 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾਓ।
r=-4
-8 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
r=9 r=-4
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
r^{2}-r-4r=36
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-5r=36
-5r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -r ਅਤੇ -4r ਨੂੰ ਮਿਲਾਓ।
r^{2}-5r+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
-5, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
r^{2}-5r+\frac{25}{4}=36+\frac{25}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
r^{2}-5r+\frac{25}{4}=\frac{169}{4}
36 ਨੂੰ \frac{25}{4} ਵਿੱਚ ਜੋੜੋ।
\left(r-\frac{5}{2}\right)^{2}=\frac{169}{4}
ਫੈਕਟਰ r^{2}-5r+\frac{25}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(r-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
r-\frac{5}{2}=\frac{13}{2} r-\frac{5}{2}=-\frac{13}{2}
ਸਪਸ਼ਟ ਕਰੋ।
r=9 r=-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{2} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}