r ਲਈ ਹਲ ਕਰੋ
r=3
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
r^{2}-5r+9-r=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-6r+9=0
-6r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5r ਅਤੇ -r ਨੂੰ ਮਿਲਾਓ।
a+b=-6 ab=9
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ r^{2}-6r+9 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-9 -3,-3
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 9 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-9=-10 -3-3=-6
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-3 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -6 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(r-3\right)\left(r-3\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(r+a\right)\left(r+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
\left(r-3\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
r=3
ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕੱਢਣ ਲਈ, r-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
r^{2}-5r+9-r=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-6r+9=0
-6r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5r ਅਤੇ -r ਨੂੰ ਮਿਲਾਓ।
a+b=-6 ab=1\times 9=9
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ r^{2}+ar+br+9 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-9 -3,-3
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 9 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-9=-10 -3-3=-6
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-3 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -6 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(r^{2}-3r\right)+\left(-3r+9\right)
r^{2}-6r+9 ਨੂੰ \left(r^{2}-3r\right)+\left(-3r+9\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
r\left(r-3\right)-3\left(r-3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ r ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(r-3\right)\left(r-3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ r-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(r-3\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
r=3
ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕੱਢਣ ਲਈ, r-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
r^{2}-5r+9-r=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-6r+9=0
-6r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5r ਅਤੇ -r ਨੂੰ ਮਿਲਾਓ।
r=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -6 ਨੂੰ b ਲਈ, ਅਤੇ 9 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
r=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
-6 ਦਾ ਵਰਗ ਕਰੋ।
r=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
-4 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
r=\frac{-\left(-6\right)±\sqrt{0}}{2}
36 ਨੂੰ -36 ਵਿੱਚ ਜੋੜੋ।
r=-\frac{-6}{2}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
r=\frac{6}{2}
-6 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 6 ਹੈ।
r=3
6 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
r^{2}-5r+9-r=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ r ਨੂੰ ਘਟਾ ਦਿਓ।
r^{2}-6r+9=0
-6r ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5r ਅਤੇ -r ਨੂੰ ਮਿਲਾਓ।
\left(r-3\right)^{2}=0
ਫੈਕਟਰ r^{2}-6r+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(r-3\right)^{2}}=\sqrt{0}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
r-3=0 r-3=0
ਸਪਸ਼ਟ ਕਰੋ।
r=3 r=3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਨੂੰ ਜੋੜੋ।
r=3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ। ਹੱਲ ਸਮਾਨ ਹਨ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}