c ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}c=\frac{r}{3m}\text{, }&m\neq 0\\c\in \mathrm{C}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
m ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}m=\frac{r}{3c}\text{, }&c\neq 0\\m\in \mathrm{C}\text{, }&r=0\text{ and }c=0\end{matrix}\right.
c ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}c=\frac{r}{3m}\text{, }&m\neq 0\\c\in \mathrm{R}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
m ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}m=\frac{r}{3c}\text{, }&c\neq 0\\m\in \mathrm{R}\text{, }&r=0\text{ and }c=0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3cm=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
3mc=r
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{3mc}{3m}=\frac{r}{3m}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
c=\frac{r}{3m}
3m ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3m ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
3cm=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{3cm}{3c}=\frac{r}{3c}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3c ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=\frac{r}{3c}
3c ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3c ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
3cm=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
3mc=r
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{3mc}{3m}=\frac{r}{3m}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
c=\frac{r}{3m}
3m ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3m ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
3cm=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{3cm}{3c}=\frac{r}{3c}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3c ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=\frac{r}{3c}
3c ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3c ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}