a ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}a=b-\frac{r}{m}\text{, }&m\neq 0\\a\in \mathrm{C}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
b ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}b=a+\frac{r}{m}\text{, }&m\neq 0\\b\in \mathrm{C}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
a ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}a=b-\frac{r}{m}\text{, }&m\neq 0\\a\in \mathrm{R}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
b ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}b=a+\frac{r}{m}\text{, }&m\neq 0\\b\in \mathrm{R}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
r=bm-am
b-a ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
bm-am=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-am=r-bm
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ bm ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-m\right)a=r-bm
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-m\right)a}{-m}=\frac{r-bm}{-m}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=\frac{r-bm}{-m}
-m ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -m ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=b-\frac{r}{m}
r-bm ਨੂੰ -m ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
r=bm-am
b-a ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
bm-am=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
bm=r+am
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ am ਜੋੜੋ।
mb=am+r
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{mb}{m}=\frac{am+r}{m}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{am+r}{m}
m ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ m ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=a+\frac{r}{m}
r+ma ਨੂੰ m ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
r=bm-am
b-a ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
bm-am=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-am=r-bm
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ bm ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-m\right)a=r-bm
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-m\right)a}{-m}=\frac{r-bm}{-m}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=\frac{r-bm}{-m}
-m ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -m ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=b-\frac{r}{m}
r-bm ਨੂੰ -m ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
r=bm-am
b-a ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
bm-am=r
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
bm=r+am
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ am ਜੋੜੋ।
mb=am+r
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{mb}{m}=\frac{am+r}{m}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{am+r}{m}
m ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ m ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=a+\frac{r}{m}
r+ma ਨੂੰ m ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}