q ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
q=\sqrt{22}-3\approx 1.69041576
q=-\left(\sqrt{22}+3\right)\approx -7.69041576
q ਲਈ ਹਲ ਕਰੋ
q=\sqrt{22}-3\approx 1.69041576
q=-\sqrt{22}-3\approx -7.69041576
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
q^{2}+6q-18=-5
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
q^{2}+6q-18-\left(-5\right)=-5-\left(-5\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਨੂੰ ਜੋੜੋ।
q^{2}+6q-18-\left(-5\right)=0
-5 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
q^{2}+6q-13=0
-18 ਵਿੱਚੋਂ -5 ਨੂੰ ਘਟਾਓ।
q=\frac{-6±\sqrt{6^{2}-4\left(-13\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 6 ਨੂੰ b ਲਈ, ਅਤੇ -13 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
q=\frac{-6±\sqrt{36-4\left(-13\right)}}{2}
6 ਦਾ ਵਰਗ ਕਰੋ।
q=\frac{-6±\sqrt{36+52}}{2}
-4 ਨੂੰ -13 ਵਾਰ ਗੁਣਾ ਕਰੋ।
q=\frac{-6±\sqrt{88}}{2}
36 ਨੂੰ 52 ਵਿੱਚ ਜੋੜੋ।
q=\frac{-6±2\sqrt{22}}{2}
88 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
q=\frac{2\sqrt{22}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ q=\frac{-6±2\sqrt{22}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -6 ਨੂੰ 2\sqrt{22} ਵਿੱਚ ਜੋੜੋ।
q=\sqrt{22}-3
-6+2\sqrt{22} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
q=\frac{-2\sqrt{22}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ q=\frac{-6±2\sqrt{22}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -6 ਵਿੱਚੋਂ 2\sqrt{22} ਨੂੰ ਘਟਾਓ।
q=-\sqrt{22}-3
-6-2\sqrt{22} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
q=\sqrt{22}-3 q=-\sqrt{22}-3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
q^{2}+6q-18=-5
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
q^{2}+6q-18-\left(-18\right)=-5-\left(-18\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 18 ਨੂੰ ਜੋੜੋ।
q^{2}+6q=-5-\left(-18\right)
-18 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
q^{2}+6q=13
-5 ਵਿੱਚੋਂ -18 ਨੂੰ ਘਟਾਓ।
q^{2}+6q+3^{2}=13+3^{2}
6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3 ਨਿਕਲੇ। ਫੇਰ, 3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
q^{2}+6q+9=13+9
3 ਦਾ ਵਰਗ ਕਰੋ।
q^{2}+6q+9=22
13 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(q+3\right)^{2}=22
ਫੈਕਟਰ q^{2}+6q+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(q+3\right)^{2}}=\sqrt{22}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
q+3=\sqrt{22} q+3=-\sqrt{22}
ਸਪਸ਼ਟ ਕਰੋ।
q=\sqrt{22}-3 q=-\sqrt{22}-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।
q^{2}+6q-18=-5
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
q^{2}+6q-18-\left(-5\right)=-5-\left(-5\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਨੂੰ ਜੋੜੋ।
q^{2}+6q-18-\left(-5\right)=0
-5 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
q^{2}+6q-13=0
-18 ਵਿੱਚੋਂ -5 ਨੂੰ ਘਟਾਓ।
q=\frac{-6±\sqrt{6^{2}-4\left(-13\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 6 ਨੂੰ b ਲਈ, ਅਤੇ -13 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
q=\frac{-6±\sqrt{36-4\left(-13\right)}}{2}
6 ਦਾ ਵਰਗ ਕਰੋ।
q=\frac{-6±\sqrt{36+52}}{2}
-4 ਨੂੰ -13 ਵਾਰ ਗੁਣਾ ਕਰੋ।
q=\frac{-6±\sqrt{88}}{2}
36 ਨੂੰ 52 ਵਿੱਚ ਜੋੜੋ।
q=\frac{-6±2\sqrt{22}}{2}
88 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
q=\frac{2\sqrt{22}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ q=\frac{-6±2\sqrt{22}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -6 ਨੂੰ 2\sqrt{22} ਵਿੱਚ ਜੋੜੋ।
q=\sqrt{22}-3
-6+2\sqrt{22} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
q=\frac{-2\sqrt{22}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ q=\frac{-6±2\sqrt{22}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -6 ਵਿੱਚੋਂ 2\sqrt{22} ਨੂੰ ਘਟਾਓ।
q=-\sqrt{22}-3
-6-2\sqrt{22} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
q=\sqrt{22}-3 q=-\sqrt{22}-3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
q^{2}+6q-18=-5
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
q^{2}+6q-18-\left(-18\right)=-5-\left(-18\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 18 ਨੂੰ ਜੋੜੋ।
q^{2}+6q=-5-\left(-18\right)
-18 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
q^{2}+6q=13
-5 ਵਿੱਚੋਂ -18 ਨੂੰ ਘਟਾਓ।
q^{2}+6q+3^{2}=13+3^{2}
6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3 ਨਿਕਲੇ। ਫੇਰ, 3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
q^{2}+6q+9=13+9
3 ਦਾ ਵਰਗ ਕਰੋ।
q^{2}+6q+9=22
13 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(q+3\right)^{2}=22
ਫੈਕਟਰ q^{2}+6q+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(q+3\right)^{2}}=\sqrt{22}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
q+3=\sqrt{22} q+3=-\sqrt{22}
ਸਪਸ਼ਟ ਕਰੋ।
q=\sqrt{22}-3 q=-\sqrt{22}-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}