ਫੈਕਟਰ
-5\left(x-\left(-\frac{\sqrt{15}}{5}-1\right)\right)\left(x-\left(\frac{\sqrt{15}}{5}-1\right)\right)
ਮੁਲਾਂਕਣ ਕਰੋ
-5x^{2}-10x-2
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-5x^{2}-10x-2=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
-10 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100+20\left(-2\right)}}{2\left(-5\right)}
-4 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100-40}}{2\left(-5\right)}
20 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{60}}{2\left(-5\right)}
100 ਨੂੰ -40 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-10\right)±2\sqrt{15}}{2\left(-5\right)}
60 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{10±2\sqrt{15}}{2\left(-5\right)}
-10 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 10 ਹੈ।
x=\frac{10±2\sqrt{15}}{-10}
2 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{15}+10}{-10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±2\sqrt{15}}{-10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 10 ਨੂੰ 2\sqrt{15} ਵਿੱਚ ਜੋੜੋ।
x=-\frac{\sqrt{15}}{5}-1
10+2\sqrt{15} ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{10-2\sqrt{15}}{-10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±2\sqrt{15}}{-10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 10 ਵਿੱਚੋਂ 2\sqrt{15} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{15}}{5}-1
10-2\sqrt{15} ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-5x^{2}-10x-2=-5\left(x-\left(-\frac{\sqrt{15}}{5}-1\right)\right)\left(x-\left(\frac{\sqrt{15}}{5}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -1-\frac{\sqrt{15}}{5}ਅਤੇ x_{2} ਲਈ -1+\frac{\sqrt{15}}{5} ਬਦਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}