ਫੈਕਟਰ
\left(p-13\right)\left(p+9\right)
ਮੁਲਾਂਕਣ ਕਰੋ
\left(p-13\right)\left(p+9\right)
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
a+b=-4 ab=1\left(-117\right)=-117
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ p^{2}+ap+bp-117 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-117 3,-39 9,-13
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -117 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-117=-116 3-39=-36 9-13=-4
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-13 b=9
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -4 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(p^{2}-13p\right)+\left(9p-117\right)
p^{2}-4p-117 ਨੂੰ \left(p^{2}-13p\right)+\left(9p-117\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
p\left(p-13\right)+9\left(p-13\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ p ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 9 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(p-13\right)\left(p+9\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ p-13 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
p^{2}-4p-117=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
p=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-117\right)}}{2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
p=\frac{-\left(-4\right)±\sqrt{16-4\left(-117\right)}}{2}
-4 ਦਾ ਵਰਗ ਕਰੋ।
p=\frac{-\left(-4\right)±\sqrt{16+468}}{2}
-4 ਨੂੰ -117 ਵਾਰ ਗੁਣਾ ਕਰੋ।
p=\frac{-\left(-4\right)±\sqrt{484}}{2}
16 ਨੂੰ 468 ਵਿੱਚ ਜੋੜੋ।
p=\frac{-\left(-4\right)±22}{2}
484 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
p=\frac{4±22}{2}
-4 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 4 ਹੈ।
p=\frac{26}{2}
ਹੁਣ, ਸਮੀਕਰਨ p=\frac{4±22}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 4 ਨੂੰ 22 ਵਿੱਚ ਜੋੜੋ।
p=13
26 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
p=-\frac{18}{2}
ਹੁਣ, ਸਮੀਕਰਨ p=\frac{4±22}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 4 ਵਿੱਚੋਂ 22 ਨੂੰ ਘਟਾਓ।
p=-9
-18 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
p^{2}-4p-117=\left(p-13\right)\left(p-\left(-9\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 13ਅਤੇ x_{2} ਲਈ -9 ਬਦਲ ਹੈ।
p^{2}-4p-117=\left(p-13\right)\left(p+9\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}