ਫੈਕਟਰ
\left(n-\left(-\sqrt{3}-3\right)\right)\left(n-\left(\sqrt{3}-3\right)\right)
ਮੁਲਾਂਕਣ ਕਰੋ
n^{2}+6n+6
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
factor(n^{2}+6n+6)
6n ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3n ਅਤੇ 3n ਨੂੰ ਮਿਲਾਓ।
n^{2}+6n+6=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
n=\frac{-6±\sqrt{6^{2}-4\times 6}}{2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
n=\frac{-6±\sqrt{36-4\times 6}}{2}
6 ਦਾ ਵਰਗ ਕਰੋ।
n=\frac{-6±\sqrt{36-24}}{2}
-4 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{-6±\sqrt{12}}{2}
36 ਨੂੰ -24 ਵਿੱਚ ਜੋੜੋ।
n=\frac{-6±2\sqrt{3}}{2}
12 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n=\frac{2\sqrt{3}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{-6±2\sqrt{3}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -6 ਨੂੰ 2\sqrt{3} ਵਿੱਚ ਜੋੜੋ।
n=\sqrt{3}-3
-6+2\sqrt{3} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n=\frac{-2\sqrt{3}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{-6±2\sqrt{3}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -6 ਵਿੱਚੋਂ 2\sqrt{3} ਨੂੰ ਘਟਾਓ।
n=-\sqrt{3}-3
-6-2\sqrt{3} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n^{2}+6n+6=\left(n-\left(\sqrt{3}-3\right)\right)\left(n-\left(-\sqrt{3}-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -3+\sqrt{3}ਅਤੇ x_{2} ਲਈ -3-\sqrt{3} ਬਦਲ ਹੈ।
n^{2}+6n+6
6n ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3n ਅਤੇ 3n ਨੂੰ ਮਿਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}